Deate 70077

Evaluation of Assembly Simulators Used in Closed Loop Attitude
Control System Testing

by
Jason Christopher Bunn

S.B. Aeronautics and Astronautics
Massachusetts I nstitute of Technology, 1996

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1997

© 1997 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Department of Aeronautics and Astronautics

XX, XX,1997
Certified by:
Steven R. Hall
Associate Professor of Aeronautics and Astronautics
Thesis Supervisor
Approved by:

Professor Jaime Peraire
Associate Professor of Aeronautics and Astronautics
Chairman, Departmental Graduate Office

Evaluation of Assembly Simulators Used in Closed Loop Attitude
Control System Testing

by
Jason Christopher Bunn

Submitted to the Department of Aeronautics and Astronautics
on February 20,1997 in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

The Cassini spacecraft’ s Attitude and Articulation Control Subsystem has been tested extensively
at the Jet Propulsion Laboratory in Pasadena, California. Three of the subsystem’s assemblies
have been tested using assembly simulators in place of actual hardware. These simulators have
been designed and tested to ensure as much commonality with the hardware as possible. Several
early design choice have impacted the degree to which the simulators have matched the hardware,
the most crucial decision concerning the interface between the assembly simulators and the flight
hardware. However, these difficulties were overcome and all testing requirements were satisfied.

The use of simulators has resulted in increased testing ability due to the small number of flight
components constructed. Though this experience, several key lessons were learned, chief among
them being clear definition of expectations and the importance of defining simulation interfaces as
identical as possible to the flight equipment. Assembly simulators, properly developed, should
prove a valuable alternative to physical hardware testing for future flight projects.

Thesis Advisor: Professor Steven R. Hall
Associate Professor of Aeronautics and Astronautics

2.0 Closed Loop ALtUde COMIOl TESINGt 10
2L AACS ot 10
2.2AACS CloSBd LOOD TESHDBUS v et 12

LT)
2.2.2CasSINE AACS TBE SN . ..o vttt et et e e 13
2.2.3 Assembly, Test and Lalnch OPEralionS vt e et ettt e e 14

BOENGING GIMOA ACUBIOS e 15
FADSCIIPHON . .. 15
3.2Cassini Lahoratory COMfIGUIEION ettt e 16

32 L EGA HaWare SIMUIBHON 16
322ECA DYNAMICSMOOEt 18
323 CI0SBd LOOD SIMUIION e 20
BIBVAURION B 3

A0 Tnertid REFBIENCE UM ... 24
A1 DESCIPHON ©...ovviviiiisis et 24
4.2Cassini Lahoratory COMfIGUIEION v et 5

A2LIRU ASEMDIY SIMUIBON . . v 5

422 GYrO DYNAMICSMOEt 3l

4.2.3 Closed LOOP SIMUIBEIONoiiii 3
A.AEVAIUBLION ... 5

5. O Reaction WHedl ASEMDIY vttt %
SDSCHIPION . .+ttt 3%
5.2 Cassini Laboratory Configurationcccocoiiiii 87

5.2 LRWA ASSENDIY SIMUIBON .. .o 3

5.2.2RWADYNamiCS MOEl ..o el

5.2.3 ClOSB LOOP SIMUIION . . .+ et %
BUBVAUBION 59

6.0 CONCIUSION ..oiviii Toreiiinnn, 60

Appendix A: Reaction Wheel Databus TransmisSion Decoding ovvvv v 62

Appendix B: Source Code for software SmUlationsoovvvveeee e 04

Figure 2-1 Attitude and Articulation Control Subsystem Block Diagram................cooviiinn... 11

Figure 3-1 Engine Gimbal Actuator BIOCK Diagramvve oot 15
Figure 3-2 Engine Gimbal Actuator Hardware SIMUIHOro v e 17
Figure 3-3 Engine Gimbal Actuator DynamicSMOTE! oo 19
Figure 3-4 Simulated and Flight Software Thrust Vectorsinthe X direction...................... . 21
Figure 3-5 Simulated and Fight Software Thrust Vectorsinthe Y direction....................... .. 22
Figure4-1 Inertial Reference Unit BIOCK DIagramt 24
Figure 4-2 IRU Assembly Simulator Flow Diagramooooooo oo 26
Figure 4-3 IRU Simulator and Haroware COMPAISONttt e 28
Figure 4-4 IRU Simulator and Haraware COMPAISON v v e e e e ettt 29
Figure 4-5 Inertial Reference Unit DynamiCSMOTE! 32
Figure 4-6 Simulated and Flight Software Angular Rates, X AXiS..........ccccoooiiiiiiiini B
Figure 4-7 Simulated and Flight Software Angular Rates, Y AXISccooivviiiiiiiiiii R}
Figure 4-8 Simulated and Flight Software Angular RAIeS, Z AXIS.o v e 35
Figure 5-1 Reaction Wheel Assembly Simulator Torque Computationovvveie i 38
Figure 5-2 Reaction Wheel rates during comparison teSt...............cocvviiiiiiiii 40
Figure 5-3 Reaction Wheel simulator rates during cComparisontestovviiie e 41
Figure 5-4 Error between reaction wheel simulator and hardware, 42
Figure 5-5 First attempt in solving remote terminal resetanomalyoooe e 45
Figure 5-6 Second attempt to solve Remote Terminal Reset Anomaly 48
Figure 5-7 Successful restest of remote terminal reset anomalyccooccvviin, 49
Figure 5-8 Reaction Wheel Dynamics Model Controller Block Diagramoov. ol
Figure 5-9 Reaction Wheel dynamics simulator anomaly-96-233oii i 53
Figure 5-10 Reaction Wheel dynamics simulator anomaly-96-235....... ..o 54
Figure 5-11 Reaction Wheel dynamics model first order anomalyccoocvviiinn, 25
Figure 5-12 Reaction Wheel Simulation closed loop diagramovvvr e 56
Figure 5-13 RWA OPM Testing- Flight Software Development Station...........l................ 57

Figure 514 RWA OPM Testing: CATS ..ot 58

Acknowledgments

First, I would like to thank the Engineering Internship Program office at MIT for making the op-
portunity to conduct research at the Jet Propulsion Laboratory possible. wouldalso liketo thank
the Co-Op office at the Jet Propulsion Laboratory for giving me the opportunity to participate. For
their support and assistance, 1 would like to thank the Validation Group of the Avionic Systems
Engineering Section at JPL, especially Richard Haga, Mario Mora, James Roberts, as well as Roy
Okuno of Boeing and Andrew Engelmann of the University of Colorado. Finally, | wish to thank

my parents, Anthony and Patricia Bunn, for their constant support and love over the years.

Acronym List

AACS Attitude and Articulation Control Subsystem
ACC Accelerometer

AFC AACS FHight Computer

ALF Accelerated Load Format

ATLO Assembly, Test and Launch Operations
BAIL Backdoor ALF Injection Loader
BPLVD BiPropellant Latch Valve Driver

CATS Cassini AACS Test Station

CDS Command and Data Subsystem

DARTS Dynamics Algorithms for Real Time Simulation
EFC Engineering Flight Computer

EGA Engine Gimbal Actuator

EGECU Engine Gimbal Electronics Control Unit
EGED Engine Gimbal Electronics Driver

GMT Greenwich Mean Time

FSDS Flight Software Development System
HELVD Helium Latch Valve Driver

IRU Inertial Reference Unit

ITL Integration and Test Laboratory

JPL Jet Propulsion Laboratory

MEVD Main Engine Vave Driver

MPD MonoPropellant Driver

Pcu Power Conversion Unit

PIU Pixel Input Unit

PMS Propulsion Module Subsystem

Pou Pixel Output Unit

PPS Power and Pyrotechnic Subsystem
RWA Reaction Wheel Assembly

6

RWM Reaction Wheel Motor

RWX Reaction Wheel Electronics

SEHW Support Equipment Hardware

SESW Support Equipment Software

SSH Sun Sensor Head

SSE Sun Sensor Electronics

SSPS Solid State Power Switch

SRU Stellar Reference Unit

VDECU Valve Drive Electronics Control Unit

VDEX Valve Drive Electronics Extension

Chapter 1
I ntroduction

In October 1997, a Titan 1V/Centaur launch vehicle will lift the Cassini spacecraft towards Saturn,
beginning the last in a series of grand tour missions that included the Voyager probes and the Ga-
lileo spacecraft. Cassini’s mission is to deliver the Huygens Titan probe to the surface of Titan and
to perform an orbital analysis of the Saturinan system. The spacecraft has been developed and test-
ed primarily by the California institute of Technology’s Jet Propulsion Laboratory (JPL) for
NASA'’s Office of Space Science.

The attitude and articulation control subsystem (AACS) for Cassini has been extensively tested at
JPL through a comprehensive closed loop testing plan. The AACS has a number of inputsto allow
for support equipment to simulate the outside environment of the spacecraft during the mission.
Examples of these inputs include accelerometer and gyroscope biases, simulated starfields and
simulated sun sensor inputs. Interfaces external to the AACS are al'so simulated. These include the
Command and Data Subsystem (CDS), the Power and Pyrotechnic Subsystem (PPS) and the Pro-
pulsion Module Subsystem (PMS). This allows for the hardware to experience flightlike condi-
tions (with the exception of environmental conditions) and makes closed loop testing possible.
However, in many cases it is not possible for a complete set of AACS hardware to undergo this
extensive testing. During the busiest testing period, three laboratories are running simultaneously
at JPL for AACS testing. For most of the hardware, there exists sufficient flight hardware to ac-
commodate these laboratories. But for three assemblies, this is not the case. Due to the high cost
of these assemblies and the quicker development time of simulators, the reaction wheel assembly,
the inertial reference unit and the engine gimbal actuators are replaced by assembly simulators
during closed loop testing.

These simulators play a pivotal role in AACS testing. During pre flight testing, the simulators must
act sufficiently like the flight units to permit testing of software functionality and mission sequenc-
es. After launch, these simulators are even more important as they become the only mechanism
by which testing of sequences or anomalies can occur.

Thisthesis evaluates the effectiveness of these simulators during testing of the AACS at JPL. With
all of the laboratories relying on these simulators after launch, it is very important to understand

the consequences of this approach. As the trend to drive down develop costs in space missions

8

continues, there is every reason to expect that future missions will have to rely on assembly simu-
lators in an ever increasing capacity. Evaluation of these assemblies of the Cassini spacecraft isa
step toward developing a knowledge base that could be used when considering different testing op-
tions in the future.

This thesis begins with a description of the closed loop testbed at JPL and how the laboratory en-
vironment works. Thisis followed by an analysis of the testing of the engine gimbal actuators, the
inertial reference unit and the reaction wheel assembly. Finally, we conclude with an evaluation

of the testbed as a whole as well as lessons |earned during closed loop simulation.

Chapter 2
Closed Loop Attitude Control Testing

2.1 AACS

The attitude and articulation control subsystem is responsible for attitude determination and con-
trol during all phases of the mission. The components of the AACS are shown in figure 2.1 and
are described briefly below.

.AACS Fight Computer (AFC): The AFC is responsible for acting on commands from the com-
mand and data subsystem (CDS) concerning guidance, navigation and control. The system is
dually redundant and interfaces with the AACS databus, the CDS databus and the power and
pyrotechnic subsystem (PPS). The AFC direct access port is used to send commands to the
AFC when the CDS is not present during test. The AFC aso interfaces with the Stellar Refer-
ence Unit through a dedicated databus used to gather pixel information during Star Identifica-
tion.

.Accelerometer (ACC): The accelerometer is used to determine changes in velocity along the
spacecraft Z axis. The accelerometer is a non redundant component that interfaces with the
PPS and the AACS databus. The accelerometer has a direct access port that allows for simu-
lation of Z axis acceleration during testing.

.Backdoor ALF Injection Loader (BAIL): This assembly is a fault protection device that is used
to provide alevel of redundancy in the event that CDS has difficulty loading the AFC with its
soft ware. The BAIL contains accelerated load format (ALF) data blocks that can load the AFC
in the event of problems with nominal loading via CDS.

.Engine Gimbal Electronics/Actuators (EGE/EGA): The EGA'’s articulate the gimbals attached
to the dual main engines of the spacecraft. The EGA’s are controlled by the EGEs, which in-
terface with the AACS databus.

.Inertial Reference Unit (IRU): The dual redundant IRU uses a set of four hemispherical resonat-
ing gyros (HRG) to provide inertial rate information to the AFC for use in attitude control.
.Reaction Wheel Assembly (RWA): There are four RWA'’s on the spacecraft. Three of these are
arranged for use as actuators during attitude control. The fourth wheel is redundant and can be

positioned to replace any of the three primary wheels in the event of afailure.

.Stellar Reference Unit (SRU): The dual redundant SRU is a sensor used to determine position

10

weadel([}oorg waisAsqng [01)U0)) UOHE[MIIJIY PUB IPMNIY [-7 dan31]

Cassini AACS
Block Diagram

A rouen A mwe
Te Sanaer, Towp Serwer,
o Sam e

Symbols:
@ smcumern

® own
B =

B omrcun

." Ll
on Load-Shed)

o

L

.

Propuision
Module
Subsystem

and attitude during the cruise portion of Cassini’smission. It utilizes a charged coupled device
(CCD) camerato detect bright bodiesin itsfield of view and this datais passed to the AFC via
apixel interface unit (PIU) for processing.

.Sun Sensor Assembly (SSA): The dual redundant sun sensor assembly is used to detect the po-
sition of the sun during attitude determination. Sun sensor heads are placed on the high gain
antenna and generate voltages proportional to the amount of light that hits the heads.

.Valve Drive Electronics (VDE): The valve drive electronics are used to interface with the Pro-
pulson Module Subsystem to open and close the various thrusters used for attitude control and

as well as the main engine valves.

2.2 AACS Closed Loop Testbeds
221 ITL

The primary lab for integration and test of the AACS at the subsystem level is the Integration and
Test Laboratory (ITL). The purpose of the ITL is to perform hardware integrations of the AACS
subsystem and test functional sequences of the Cassini mission. All flight hardware as well as en-
gineering models or flight spares are tested in the ITL to ensure proper electrical configuration
when the assembly is integrated with the AACS databus, the Power and Pyrotechnic Subsystem
(PPS) and the Propulsion Module Subsystem, if applicable (VDE, EGE/EGA). For this purpose,
there are hardware simulators of the PPSand PMSin the ITL that allow testing of the interfaces to
these subsystems.

For testing functional sequences, the ITL has an extensive set of support equipment hardware and
software. The hardware and software work together to simulate the external interfaces to the
AACS and permits closed loop testing. Support equipment hardware consists of a series of com-
puters and additional equipment which interface with the users of the system as well as the hard-
ware. This equipment includes an Inertial Sensors Controller (INS Controller) that permits biasing
of the accelerometer and inertial reference unit, the assembly simulator hardware for the engine
gimbal actuators, the inertial reference unit and the reaction wheel assembly, electronics to gener-
ate bias voltages to send to the sun sensor assembly and star field data to send to the stellar refer-
ence unit, and equipment to interface with the AACS Flight Computer. The hardware aso includes
the simulators for the command and data subsystem, the PPS and the PMS.[2]

Support equipment software is an extensive network of computer programs working to simulate

12

the outside environment of the spacecraft. The programs fall into two large groups-- real time and
non real time. Real time programs consist of the assembly simulator software, subsystem simula-
tion soft ware (e.g. CDS, PPS, PMS), as well as software to monitor different assemblies and report
on their status. The non-real time software includes tasks such as user console interfacing and gen-
eration of displays.

The software also uses the concept of a*“blackboard” to provide for data visibility across the sim-
ulation. The software runs on a set of five processors called chassis. These processors must work
in a synchronized fashion and timing is very critical. Therefore, the processors use shared memory
to facilitate data transfer. All of the chassis use the same set of memory to read and write variables.
This means that all of the processors knows what the state of the system is at any given time. This
is analogous to how a common blackboard is used so that all those in a room have a consistent data
set, and thus this reflective memory is know as the blackboard. [4]

Finally, the dynamics of the simulation are propagated in real time via a computer program called
DARTS- Dynamic Algorithms for Real Time Simulation. This program was developed by A. Jain
of the Jet Propulsion Laboratory and computes the time rate of change of the state of the Cassini
spacecraft as a dynamical system[3]. The program accepts any number of actuators, sensors and
flexible modes and thus is what makes closed loop dynamics testing possible for Cassini.

The ITL also permits some level of system mode testing. The Command and Data Subsystem is
usually simulated in the ITL, but for some testing, the actual CDS is used and the AACS Flight
computer takes its commands from the actual command computer. This permits testing of the

CDS-AACS interface in the ITL before assembly, test and launch operations begin.

2.2.2 Cassini AACS Test Station

There aso exists the Cassini AACS Test Station (CATS) for development of flight and support
software. CATS is similar to the ITL in that actual hardware is present in most cases, support
equipment hardware processors are used to interface with the hardware and users, and a closed loop
dynamics environment is possible with the use of DARTS. The mgjor difference between CATS
and ITL istheir purpose. ITL is used to test electrical interfaces of the flight hardware and thus all
hardware that is flight certified in first tested in the ITL before delivery to the Spacecraft Assembly
Facility. CATS, on the other hand, is used to test the software of the system. The hardware is

13

present, but electrical “breadboards’ are primarily used in CATS. The functionality of these bread-
boards is identical to the flight units in most cases, but shielding, grounding and electrical interfac-

es may be different.

2.2.3 Assembly, Test and Launch Operations

Assembly, Test and Launch Operations (ATLO) for Cassini began in late 1995 and will continue
through launch of Cassini in October, 1997. Primarily testing occurs at the Spacecraft Assembly
Facility at JPL. At thislocation, the flight hardware is integrated together for the final time. Also,
many of the simulators are not present. The PPS hardware is there, and thus all power comes from
the actual PPS. There are no assembly simulators once all the hardware is integrated. The CDS is
also present and there is no CDS simulator. However, there is one simulator still present, The PMS
simulation is still running in ATLO due to the danger to personnel of testing main engine firings
and reaction control thrusters. The Propulsion Module is tested separately by Lockheed Martin for
the vast majority of the testing period. During most testing in ATLO, the DARTS simulation is
still present and permits closed loop testing. The exception is during environmental testing when

the support equipment is disconnected and no closed loop testing is conducted.

Throughout the testing plan, the EGAs, RWAS and IRUs are ssmulated in the ITL. and in CATS.
The real hardware is present for interface checkout in the ITL and during ATLO testing. The next
sections go into detail concerning the three assembly simulators and evaluates their usage in the
testing of Cassini’s AACS.

14

Chapter 3
Engine Gimbal Actuators
3.1 Description

The purpose of the engine gimbal actuators is to rotate the main engines of the propulsion module
subsystem about their gimbal axes in response to commands by the AACS flight computer. The
main engines are rotated such that the thrust vector-passes through the center of mass of the space-
craft as well asin the desired inertial direction. The IRU and ACC are used in conjunction with
the EGA’s to determine this direction as well as to determine when the required velocity change
has been achieved.

A signal flow for the EGA’sis shown in figure 3.1. The actuators act on extension commands pro-

30V Power 30V Power
EGA Control Unit EGA Driver EGA
i — e 2 s N
Commanded uasi-integr erale]
- f) d eg - Serialize & Drivers Motor
Extension compensatjon _ _ Isolate
LVDT L | LVDT |
Mux Excitation)
_ Actud i A/D Lead) -
= Extension Conversion |— Compensation DemodulatlonJ

Figure 3-1 Engine Gimbal Actuator Block Diagram

vialed by the AACS flight computer through the engine gimbal electronics. The extension is con-
trolled by comparing the actual positions of the actuators to the desired position and correcting the
position by altering the motor voltage. The actual positions are determined by the feedback signal
from a Linear Variable Differential Transformer (LVDT) that is attached to each actuator. The
electronics that control the position consist of a control unit and a driver. The driver accepts volt-
age commands from the control unit and generates excitation signals for the motor and the LVDT

of the actuator. The control unit accepts commanded extensions off the AACS databus and the

15

LVDT feedback signal. The control unit generates a digital representation of the LVDT signal for

the databus as well as the voltage commands for the driver.

3.2 Cassini Laboratory Configuration

The Engine Gimbal Actuators are smulated in the ITL and CATS through a combination of a hard-
ware simulator and a software dynamics interface. The purpose of the hardware is to simulate the
engine gimbal actuators and generate a feedback signal that represents the LVDT signal for the real
actuators. The dynamics software accepts the commanded extensions and the LVDT extension in-
formation and then computes the main engine thrust vector direction for use in the DARTS simu-

|ation.

3.2.1 EGA Hardware Simulator

Description

The EGE hardware simulator was designed to simulate the LVDT feedback information that is
supplied by the real EGAsin responseto the LVDT excitation signal and the motor drive input. A
block diagram is shown in figure 3.2.

To simulate the LVDT, the EGA hardware simulator consists of a motor simulator and the LVDT
simulator. The motor simulator accepts the EGE drive signal and passes it through an optical iso-
lator. The signal is scaled such that a position signal is generated that is proportional to the com-
manded position of the actuator. Then, this signa is multiplied by the LVDT excitation signal, also
received from the EGE. The multiplication retains the sign of the motor drive signal and the result
thus simulates the LVDT feedback signal.

Validation Test
When the engine gimbal actuators are integrated into the subsystem in the ITL, they are integrated
per a hardware integration procedure. This procedure exercises the actuators and ensures that they

perform adequately. Since the simulators and the real actuators are integrated using the same pro-

16

cedure, the data can be compared to evaluate the simulators.

—

LVDT Eexcitation High

LVDT Excitation Low

EGA
Simulator
Interface
Panel

LVDT Multiplier
Feedback
Signal

Motor Drive High Signal

- Proportional to
Commanded
Optical Gain and Position
Isolator scaling

| o

Motor Drive Low

Figure 3-2 Engine Gimbal Actuator Hardware Simulator

The actuators (or simulators) are exercised through a series of extensions during the integration

procedure. The results of this procedure was that the simulators perform to within specified toler-

ances and track the hardware very well and these results are summarized below:

.Average absolute deviation from the commanded position for simulation serial number 005 was
0.0326 mm.

.Average absolute deviation from the commanded position for simulation serial number 010 is
was 0.0215 mm.

.Cassini AACS requirement: O. 1 mm deviation.

Even though the AACS requirement was met on average, the maximum error did deviate from the

AACS requirement for both of the simulators. This deviation was deemed acceptable for testing,

however. Thisis because Cassini fault protection will activate if the deviation is greater than 0.27

mm for two consecutive readings of the EGA (reading occur every 125 ins). This behavior was

not observed when testing either the EGA’s or the EGA simulators and thus the EGA simulators

were accepted for testing. Due to the variance of the EGA positions, the power measurements of

17

the EGAs also had more variance than with the flight equipment, but this was also acceptable. [5]

Differences and Problems

One problem that did occur during testing is that afault protection error in flight software was not
found in the ITL testing and the bug was discovered when the fault protection autonomously pow-
ered down the EGA driver during integration of the flight Propulsion Module Subsystem on the
actual spacecraft. The investigation concluded that the EGA simulators were not designed to sim-
ulate an EGA under actual flight loading conditions. Therefore, the first time the flight software
interfaced with an EGA loaded onto a gimbal and a Main Engine was during ATLO testing. This
brought out one of the important lessons learned through AACS testing. If the requirements are
not stated clearly at the outset and thought through in their entirety, unforeseen events may occur.
The result of this testing in ALTO was a decision to use flight spare EGAs attached to a load fixture
for future testing. Thus the EGA simulators will not be used for post launch ITL analysis activities.

3.2.2 EGA Dynamics M odel

Description

To properly represent the motion of the EGA’s in the closed loop dynamics ssimulation, the support
equipment software must ensure that the main engine thrust vector direction is consistent with the
EGA extensions. To accomplish this, a software “model” of the EGA accepts information form

the EGA (or EGA simulator) and computes the main engine thrust vector. The relationship be-

18

tween the EGA (or simulator) and the EGA “model” is shown in figure 3.3 and is described below.

\
|
1 AACS DATABUS
|
|
EGA Dynamics Model |
|
|
ega_kinematics I
ega_
model BUS
. MONITOR
ega extensions
T LVDT feedback
|
Y |
ega_extensionl |
| .
Main Engine «———p] t
\ Thrust Vectors : LE,GECU
EGED & »| EGA
! [EGED | SIMS
New Dynamical | .
DARTS [sie | :
|
|
SUPPORT EQUIPMENT l‘ FLIGHT EQUIPMENT
\
\
\

Figure 3-3 Engine Gimbal Actuator Dynamics M odel

The model consists of three modules: ega_model, ega_kinematics and ega_extension. The first
module, ega_model, accepts the LVDT and commanded extension information and computes the
new extensions of the actuators. Thisis done without regard to dynamics and the extension is sim-
ply set to the current commanded extension. The only exception isif the step required to update
the position is too high. In this case, the model updates the extension with a series of smaller steps.
Once the extensions are computed, ega_kinematics is called. This module calculates the thrust
vector by first computing the gimbal angles (accomplished by the module ega_extension) and then
transforming the angle information into the main engine thrust vector direction. Once the thrust
vector direction is known, this information is used during the next iteration of the dynamics simu-

|ation.

19

Validation Testing and Results

The EGA model was validated by comparing resulting engine gimbal angles to analytical predicts.
The EGAs were commanded to severa different positions and the computed main engine thrust
vector was recorded. Given this thrust vector, a solution for the EGA position was derived and
compared to the commanded position. The data was consistent and the model was validated in this
isolated case. The table below shows the predicted and actual values for the EGA extensions in

response to several command to stroke the gimbal actuators.

‘E-GA P Commanded | EGAPActuad | EGA Q Commanded [EGA Q Actual

0 0 19 18
1563 1563 0 0
1563 1563 1563 1563
-155 -155 1563 1564
-155 -155 961 962
-963 -963 961 962
-963 -963 -1563 -1562

155 155 -1563 -1562
155 155 -961 -960

0 0 -961 -960

0 0 -1 0
960 962 -1 —]
960 962 -960 -961
-1563 -1562 -960 -959
-1563 -1563 -1563 -1562
-962 -962 -1563 -1562
1563 1563 961 961
1563 1563 1563 1563

0 0 1563 1564

0 0 0 1

3.2.3 Closed Loop Simulation

The two primary test activities of the laboratory that have validated the described EGA simulation
have been the Main Engine Trajectory Correction Maneuver (TCM) Testing and Fault Injection
20

Testing. The purpose of the Main Engine TCM is to test the hardware and software under a real-
istic set of circumstances where the main engine is used to alter the path of the spacecraft, Preci-
sion Thrust Vector Control (TVC) is performed by the flight software and it is critical that the
dynamic model of the actuators alter the thrust vector as commanded by the flight software. As
the following data in figures 3.4 and 3.5 shows, the EGA simulators performed well in a closed
loop environment. The X and Y components of the thrust vectors of the simulation(py_me_[0 and

0.02

0.01

-0.01

-0.02(-

-0.03 U SRR

Direction Cosine

—0.04 S S

0.05 e SO

-0.06

-0.07
1150 1200 1250 1300

Time [see] /

~— -

Figure 3-4 Simulated and Flight Software Thrust Vectorsin the X direction

21

-0.1 T 1 -

: — py.py_me_1l
4 g x Thr Y/
-0.11ff : '

-0.12

-0.13

Direction Cosice

014 F || e

CO.AB b e

-0.16 ‘ ‘
1150 1200 1250 13(

Time [seeg] /

Figure 3-5 Simulated and Fight Software Thrust Vectorsin the Y direction

1]) and what flight software believed to be the thrust vector (Thr_[X and Y]) matched very well.
A Z component comparison is not available since the flight software does not record Z axis data
since the direction cosine is so close to one.

Another closed loop aspect of the EGA simulation is the task of injecting faults into the simulation
to test the fault protection responses. The EGA simulator was designed to interface with the sup-
port equipment exactly like the real hardware. Thus, it was not possible to simulate any faults that
involved hardware failure. The software dynamics model could have been altered to simulate
many faults, but since there is no way to alter the EGA hardware simulator there was no need. If
the model was to simulate a stall, for example, it could easily be disabled from the rest of the sim-
ulation. This would not be possible for the hardware, however, and the result would be flight soft-

ware receiving an external disturbance with no indication that a stalled EGA is the cause.

22

3.3 Evaluation

The EGA simulation met the requirement for test of the engine gimbal electronics. Specifically,
the EGA simulator did not cause fault protection to activate unexpectedly during testing in either
CATSor ITL. Thisfacilitated testing of the flight software, as well as the Main Engine Traectory
Correction Maneuver. Due to the nature of the hardware simulator, testing of the fault protection
capabilities was not performed. When the flight actuators were integrated with the AACS and the
flight PMS, fault protection did activate unexpectedly. But since the EGA simulators were never
meant to simulate aloaded EGA, the conclusion is that the EGA simulator did perform adequately
during AACS testing.

23

Chapter 4
Inertial Reference U

4.1 Description

nit

The Inertial Reference Unit (IRU) is a dua redundant assembly that is used to detect inertial angu-

lar velocity of the spacecraft. Each IRU contains four hemispherical resonating gyroscopes and

processing electronics. The IRU contains its own processing circuitry that interfaces with the

AACS databus RTIOU and the gyroscopes. A block diagram of the IRU is shown in figure 4. 1.[6]

g |

o\

[Rs422 xcvr }

HOM
Launi

[l

SHARC

| GuPI |

SEM 1

I GUPI l__

Gupl |

| bt

SEM 2

RTI QU

RS-422
Test
Discretes
+5V
-5V
+15V PS\MI
-15V
-10OV———
Te
Thermistor e
Temp-
AACS Bus A
AACS Buss

+30 Vdc

RTN

SEM Sensor Electronics Module Circuit Card

SHARC Space HRG and Accelerometer Readout Controller Main processor IC (located on SEM)
GUPI Gyro Unit Processor Interface 3 Gyro signal interface IC (located on SEM)
RTIOU Remote Terminal Input Output Unit External bus interface IC (located on SEM)
PSM Power Supply Module Power converter circuit card

\

Figure 4-1 Inertial Reference Unit Block Diagram

24

The gyroscopes each run at a frequency of approximately 2000 Hz and a rate estimate is obtained
from the gyroscope every cycle. The SHARC processor has software that runs at 100 Hz. Each
time the software loop is executed, the rate measurements since the last time the software was ex-
ecuted are integrated and the angle is added to the data that will be passed to” the flight computer.
The flight computer can read the accumulated angle or the IRU status from the IRU. The AFC can
also write data to the IRU. This data, for example, would be new software to the SHARC in the
event of an IRU reset.

4.2 Cassini Laboratory Configuration

As in the case with the EGA simulation, there are two parts to the IRU simulation- an assembly
smulator and a dynamics model. The assembly simulator is software that represents the IRU when
the actual hardware is unavailable in the laboratory. The dynamics model is used to generated bi-
ases for the IRU by converting the spacecraft angular rates to rates in the gyro sensing axes which

are used to bias either the real gyros or the simulator.

4.2.1 IRU Assembly Simulator

Description

The assembly simulator has the function of accepting biases from the dynamics interface and con-

verting these biases into data for the flight software to interpret. This simulator consists of three

parts. The first is aremote terminal input output unit. This unit is aremote terminal on the Cassini

AACS databus and facilitates communication with the AACS flight computer. The second com-

ponent is an interface card that communicates with the RTIOU. This card is a series of static RAM
registers that the ssmulator can write to. This allows the software to act as the actual hardware by
interfacing with the RTIOU similar to the actual hardware. The third component is the actual soft-

ware for the IRU simulator. The software supports five functions of the IRU: power on initiaize- -
tion of the IRU output data, IRU Built in Test (BIT), IRU SHARC software download, IRU * soft

reset”, and normal operation of the IRU. The data flow through these five functions are shown in

25

figure 4.2.

e
No :
Clear registers
Just yes L
turned on? Initialize and start BIT |
has BIT no
expired?
set status and set download
soft reset? yes wait for reset
to complete
Download
Begin Nominal Operation
.

Figure 4-2 IRU Assembly Simulator Flow Diagram

26

Upon receipt of a power on command, the simulator sets all output information to zero and sets a
timer to begin the BIT. The BIT simulation is a one second hold that simulates the time for the
SHARC built in test. Once this hold is complete, the IRU simulator reports this information via
the RTIOU to the flight software and sets a flag indicating readiness to begin the software down-
load. The software download function is simulated by verifying receipt of the data sent by the
flight software and then indicating avalid checksum and avalid load. The soft reset is another one
second hold for the smulator and results in reporting a good status message back to the flight soft-
ware after completion of the hold.

Finally, there is the actual operation of the IRU. The software checks for a soft reset and if none
occurs, the software proceeds to calculate the outputs of the gyroscopes. Since the IRU simulator
receives the rates the gyroscopes sense in the gyroscope coordinate system, the simulator simply
has to convert these rates into a change in angle and properly format this information for the
RTIOU. Thisis accomplished by multiplying the rate received by the IRU cycle time and adding
this angle to the last angle computed to determine the accumulated angle. Once this is accom-
plished, the angle is converted to a form compatible with the RTIOU and the datais passed to the

flight software.

Validation Testing and Results
This simulator was integrated into the ITL and CATS with the same integration procedure that was
used for the actual flight hardware. Thus, we have a common test to compare the simulator and

the hardware with. During the integration procedure, the gyros are biased with a set of support

27

equipment commands. Figures 4.3and 4.4 show the result of these commands.

RU Pulses

X 10
1 T T
08 - O IR A . % L
X
0.6 X, X _
X ' £
04F - N X]
” KX X X X X X "
... L x X X
0.2 X . »
»
Obs¢ oo X
* *
X
02F-- B L R =
K
0.4F W e e X -
X
06k X o , Ko
0.8 e X iru fit at =
* jru_sim_ai
1| - ! 1 - .
0 50 100 150 200 250
Time [se€]

Figure 4-3 IRU Simulator and Hardware Comparison

28

X 107

ogk - - .
0.6« o R G e

04 e R » Gl Lo ¥,

0.2 oL ;

RU Pulses
o
X
X
)

02 e *)E(............................... .

0.4 e e ’ e e Ve

L0.6F g SR L RRRRP _ . e

-0.81 ... X e 4444444 T

0 50 100 150 200 250
Time [see]

Figure 4-4 IRU Simulator and Hardware Comparison

As the data shows, the IRU simulators matched the performance of the flight equipment very well.
Differences and Problems

Integration revealed some problems with the simulator that have been corrected to increase the fi-
delity of the software. The first problem was with the processing cycle. The original version of
the software integrated at the same speed as the dynamic simulation, 16 Hz. Thisis not consistent
with the actual hardware, which reads data from all four gyros at a speed of 100 Hz. There is the
danger that the simulator was running too slow and unrealistically large changes in angles would
be reported by the simulator. It would be more consistent with the hardware if the software ran at
a speed of 400 Hz and processed one gyroscope at atime. When all four gyros were processed,
the simulator made this data available to the flight software through the RTIOU. This configura-

29

tion change was implemented and performs very well.
A second problem was with the noise of the IRU. The origina model did not have any simulation
of gyroscope noise and once again a change would improve fidelity. The final solution was for the
model to cycle through a large set of experimental data representing realistic numbers for gyro-
scope noise. These numbers would be added to the output of the gyroscope and would simulate
noise coming from the IRU gyroscopes,
A final problem was with the timing of the simulator. In redlity, the IRU has a double buffer that
is used to prevent the flight software from reading partially updated data, One of these buffers al-
ways has a complete packet of information for the flight software. However, the assembly simu-
lator card does not support double buffering. Thus, flight software was reading the information out
of the IRU simulator, but the information was not completely updated. To correct this problem,
the assembly simulator card was modified such that when flight software was reading the informa-
tion from the card, a signal was sent to the IRU assembly simulator. The software was changed to
verify this signal was not active before a read was attempted. If this signal was sensed, output was
delayed until the read was concluded, This correction worked very well and the information to the
flight software was valid.
The genera conclusion isthat once coding errors are corrected, the simulator does act sufficiently
like the hardware to permit testing. However, there are several aspects of the hardware that are not
simulated. Essentially, the actual computation of the SHARC is not simulated. The Built In Test
is not actually performed. Instead, atimer simulates the delay the BIT would cause in the process-
ing cycle. Similarly, the checksum during the download of the new SHARC software is not per-
formed. Again, a timer is used to simulate the delay of the download and checksum. This was
done because simulation of the actual SHARC software was not an objective in the IRU simula-
tion. The basic philosophy was that the inputs and outputs of the IRU would be asidentical asthe
software team could make them to the hardware. Thus the simulator can report that the data has
been received or that a BIT has been performed, but the BIT or data download may not have actu-
aly happened in the simulation software. This black box concept has important consequences
when fault injection is considered.
One of the advantages of using simulators is that the test analyst has the ability to simulate faults
without damaging actual hardware. However, with the IRU simulator, any faults to the SHARC
or other processing electronics cannot be simulated. The simulators were designed such that the
30

“outside world” only “has a command path to the simulator if it has a command path to the actual
device. Therefore, since one cannot command a BIT failure with the actual hardware, for example,
it was decided that one would not be able to with the simulators either. Any fault injection would
have to be possible with either real hardware or simulators and thus involve changing existing in-
puts into the devices. For example, it was possible to simulate a failed gyro by sending a large bias
into one of the gyros. The SHARC or IRU simulator would see this large rate on one of the gyros
and declare that gyro’s data invalid. But failures internal to the IRU would have to be simulated
on another testbed.

4.2.2 Gyro Dynamics M odel

The gyro model within the dynamics simulation computes the biases that are sent to the IRU as-
sembly simulator model. The model is straightforward. First, the locations of the gyroscopes and
the transformations of the angular rates of the spacecraft from spacecraft to the gyro sensing axes
were determined and loaded into the model. Then the model accepts the spacecraft angular rates
from the DARTS simulation and converts these to rates that the gyroscopes sense. Then this in-

formation is passed to the IRU model as described above, The interaction between the model and

31

the simulation is shown in figure 4.5.

/ I

|
|
‘ AACS

| Databus
DARTS | ¢_Previous Suee !
Dynamic and Actuator Inputs;
Simulation “
|
|
|
Spacecraft \
Angular |
Rates |

' \. | IRUor R
Gyroscope| Inertial IRU T
GYRO |Biases Sensors > Simulator |l [
MODEL ™ Controller 8
I
SUPPORT EQUIPMENT , FLIGHT EQUIPMENT

\
I

/

Figure 4-5 Inertial Reference Unit Dynamics M odel

The gyroscope dynamics model was validated as a part of the closed loop simulation described be-

low.

4.2.3 Closed Loop Simulation

The inertial reference unit simulator was used extensively in all laboratories during the testing of
the Cassini AACS. The criterion for success of the simulator is how effectively the ssmulated an-
gular rates of the dynamics simulation are reported to the flight software. This can be shown by

examining the reported spacecraft rate and the simulated rate. Thisis shown in figures 4.6 through

4.8.

the variable “b_ang_rt_[x,y or z]” is the angular rate being simulated and the variable “[X,Y

x 10 l
t } 1 ‘ L l» |
b : —Fb_ang_ngx
— trrrerererererererereneme . el j T
10 H: U’b'”&;mmelf‘l"l”l"
8- | |

Rate ‘rad/sec]

2380 2400 2420 2440 2460 2480 2500
Time [see]

Figure 4-6 Smulated and Flight Software Angular Rates, X Axis

33

Rate [rad/sec]

40 ¢ I
P T SO S 2 U S
Ll e
ab % e
2000 2150 250 3300 2400 200 T80 Z00 280029 30

g Time [see] j

Figure 4-7 Simulated and Flight Software Angular Rates, Y Axis

~

-5
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 30[
Time [see] /

Figure 4-8 Simulated and Flight Software Angular Rates, Z Axis

or Z]_rate” iswhat flight software is reporting the angular rate to be after converting data from the
IRU simulator. Both sets of rates track extremely well and we conclude that the IRU simulator

performs well in the closed loop environment.
4.3 Evaluation

The Inertial Reference Unit simulator has performed very well in all three laboratories and has
proven avaluable tool when IRU hardware was unavailable. The integration and test of the simu-
lator revealed that the simulator had several shortcomings, but once these were corrected the sim-
ulator had a high degree of fidelity when compared to the actual hardware and closed loop
performance during flight sequences have been excellent, The IRU assembly simulator represents
the actual hardware well and, even though fault injection testing was limited, still performed ade-

guately in ITL and CATS.
35

Chapter 5
Reaction Wheel Assembly
5.1 Description

The Cassini spacecraft hastwosources ofattitude control. The first source is the Propulsion Mod-
ule Subsystem consisting of the main engines and 16 reaction control thrusters. The second form
of control is the reaction wheel assembly. There are four reaction wheels on the spacecraft, three
of which are the primary reaction wheels and the fourth which is a backup reaction wheel. The
purpose of the reaction wheels is to store angular momentum of the spacecraft as well as to provide
attitude control.

The reaction wheels receive commands from the flight software over the AACS databus. There
are eight commands that are accepted by the reaction wheels. These are summarized in table 5.1
below. [6]

Table 5.1: Commands and responses for the Reaction Wheel Assembly

Command Response

Read Delta Angle Return the accumulated angle count, (including over (under) flow in-
dicator) and reset counter to zero.

Read Torque Return the current command torque setting for the RWA

Read RWA Current Return the current value of total RWA electrical current.

Read Motor Current Return the current value of RWA motor electrical current

Read Status Return the current operational status data of the RWA

Set Torque Hold the reaction torque output at the value specified in the command

Reset Set delta angle pulse counter to zero before resumption of counting,
and set torque command to zero. This response shall be automatically
executed at the time power to the RWA assembly is commanded on.

The reaction wheels utilize a brushless DC motor to spin the wheels and a hall effect tachometer
to sense the motion of the wheel. Twenty four magnets are attached to the reaction wheel and hall
devices sense the motion of these magnets pasta sensor. This sensor then is the tachometer which

increments by one each 1/24th of arevolution of the reaction wheel.

36

5.2 Cassini Laboratory Configuration
5.2.1 RWA Assembly Simulator

Description

Asin the case of the IRU, the RWA assembly simulator consists or aremote terminal input output
unit for the RWA, software for the simulation, and an interface card that permits communication
between the two. The reaction wheel assembly simulation software is a C program that simulates
the dynamics of the reaction wheel for the purpose of calculating outputs to communicate with the
AFC viathe RTIOU. The inputs to the program area torque command from the AFC and power
on/off commands. The program’s outputs are tachometer counts, wheel power, and a torque com-
mand wrap around. The program data flow consists of reading the power and torque commands,
propagating a three dimensional state vector consisting of the wheel position, rate and a time de-
pendent frictional term, and then computing the tachometer and power outputs for the AFC.
When the loop starts, the model reads a RAM register to determine if the AFC has commanded the
wheel to power on. If the whedl is off, the power state is set to zero and the state continues to prop-
agate. In that case, the model would simulate frictional spin down of the reaction wheel. If the
wheel power state is set to one, the model performs two more reads of the RAM registers to read
the torque enable command and the 2’ s complement torque command.

The second step of the loop is to propagate the state of the system. This is performed by computing
the derivative of the state and then performing numerical integration to determine the actual state.

To determine the derivative of the state, the program first computes the total torque that will be

37

applied to the wheel. This torque computation is shown in figure 5.1 and consists of four elements.

r
Torque Command\
j -
>

Readback

output

rate :I Power Mode! |~——>[Scaling I»—-> Line
I Current
4
Torque Motor
Command Torque
] Total
- Ripple -+ 1
position Torquey, U0 U,
—15- Torque Inertia 28
Calculation \ _15
d
+ 5%
rate Viscous daht
| - Friction friction
Calculation
rate Dah! .| s }
P Friction
Calculation
a8
e B

Figure 5-1 Reaction Wheel Assembly Simulator Torque Computation

First, there is the commanded torgue. This is converted from two’s complement to an equivalent
value in Newton Meter-seconds and compared against a maximum motor torque. If the command-
ed exceeds the maximum, the motor torque is set to the maximum, There is also an overspeed flag
that is set if the wheel is spinning too fast, If it is spinning too fast, the motor torque is set to zero.
The second element of the torque command is a term to account for commutation ripple. This
torque is due to the brushless DC motor and is sinusoidal in nature due to the switching of the DC
current windings.

The third component of the torque is the viscous friction which opposes wheel velocity and is de-
termined by multiplying the wheel rate by a constant. Finaly, there is bearing friction to consider.
Thistorque is called Dahl friction based on the bearing model developed by P.R. Dahl.[1] This
model computes the time derivative of the friction and is integrated to determine the torque to ap-

ply. These four components are summed to determine the torque that will be applied to the whedl.

38

Once the torque is known, the state derivative is calculated. This is accomplished by setting the
derivative of the position to the rate and the derivative of the rate to the torque divided by the wheel
inertia. The derivative of the Dahl friction term is calculated via Dahl’s model, These values are
then used in a4th order Runga Kutta numerical integration algorithm to determine the state of the
system. The time step used in this routine in 0.0625 seconds.

Finally, the output is computed. Thisis performed by first calculating the power consumed by the
wheel based on the vendor’s power model and converting the power into a current. Next, the ta-
chometer data is computed. This simulation runs every 62.5 ms, but the tachometer datais read by
the flight software every 125 ms. Therefore, the tachometer output should reflect what the real ta-
chometer would say after 125 ms. This is accomplished by multiplying the current rate of the
wheel by 125 ms. This gives an estimate of the position of the wheel after 125 ms. Then, thisis
multiplied by a scale factor representing the quantization of the tachometer. This is then the output
of the tachometer. Since the output is a integer, the fractional value computed by this calculation
is saved and added to the next read. In this manner, no tachometer counts are lost. Finally, the
current, tachometer counts, and the torque command are sent to the RAM registers for transmission
through the RTIOU back to the AFC.

Validation Testing and Results

The reaction wheel assembly simulator was unit tested by performing the reaction wheel simula-
tion integration procedure in the ITL, CATS, and ALTO. This procedure contains power off and
power on tests to verify electrical interfaces between the AFC and the RWA simulators. The power
off section is performed with break out boxes in the loop to protect the hardware in the event of a
incorrect connection. The power on tests verify that the flight software can command the wheels
and that the reaction wheel simulation responds as expected. These tests were performed in the
ITL and in CATS and no significant problems were found that would inhibit testing using the sm-
ulators.

A second set of tests was also performed. This set duplicated tests that were performed on the
flight equipment during stand alone testing. These tests were performed in CATS to allow for

comparison of simulator response and that of the actual hardware. The results of thistest is shown

39

in figures 5.2 and 5.3. Figure 5.4 shows the error between the two rate plots.

250 ' l - T — T]

200

150 |-

100

50|

Rate rad/ sec]

-100 |-

-150 -

-200(

-250 ‘ l . . \
200 300 400 500 600 700 800
Time [5 see]

Figure 5-2 Reaction Wheel rates during comparison test

40

Rate [rad / sec]

250 \

200

150

00

50

-1loo

-150

-200

—_ 1] 1 1 1
25%00 300 400 500 600 700 800

Time [5 see]

Figure 5-3 Reaction Wheel simulator rates during comparison test

41

E-N
T
!

Rate [rad / sec]
w

0 1 1 1
200 300 400 500 600 700 800
Time [sec]

Figure 5-4 Error between reaction wheel smulator and hardware

Asisshown in the plots, particularly in the error plot, the simulator was able to track the hardware
guite well. Theinitial error is essentially aresult of not being able to exactly reproduce the earlier
test. The hardware was tested in a stand alone environment, while the simulator was tested with
flight software active. As aresult, the simulator test was subject to flight software constraints on
alowable wheel torques and rates. However, during wheel rate changes on the order of 500 radians
per second, the error was less than 10 radians per second. In addition, this error did not change
appreciably when the wheels were accelerating.

There are a number of important differences between the simulation and the real reaction wheels.
Thefirst difference is the multiplexer that exists on the real wheel. This allows the flight software
to receive different measurements of reaction wheel current and voltage. However, flight software

is not designed to use any information other than the line current for the reaction wheels. Thus, the

42

simulator only computes line current.
A second difference points to an important issue that was seen earlier with the IRU simulator. Nei-
ther of these simulators have any knowledge as to when the flight software is going to read the
RTIOU output. This means that information must be kept current at al times at the RTIOU output.
A conseguence of thisis seen in the way the output of the RWA was computed. The RWA routine
runs at 16 Hz, but the flight software reads the RTIOU of the RWA at 8 Hz. Thus, it would be
desirable to run the output routine at 8 Hz as well. The problem isthat if thisis attempted, the sim-
ulator and the flight software diverge from each other and the result is incorrect output. “Old” in-
formation is kept at the RTIOU registers for too long and incorrect information is relayed to flight
software. Thisiswhy the output routine runs at 16 Hz and integrates the tachometer output as if it
was running at 8 Hz. This way, the simulator and the flight software will not diverge enough to
cause problems. In addition, the reaction wheel simulator will use the signal from the assembly
simulator card indicating aflight software read to prevent data corruption.
A third difference lies in the fact that the static ram that allows communication between the soft-
ware and the RTIOU uses the same registers for reading and writing, That is, the memory location
for reading information from a register is the same that is used to write information to that register.
Thisisaproblem with register 5 of the RWA. Thisregister is simultaneously the lower byte of the
tachometer data from the RWA simulator and the load mux command to the RWA. This means
that there is a chance, if the timing is unfortunate enough, for the RTIOU to read what it believes
is the lower byte of tachometer output, but is actually the old load mux control command from that
last cycle. Thisis arare occurrence due to the faster processing time of the RWA simulator, but if
the processing takes excessively long or if flight software is quicker than usual, bad data could
reach the AFC. With the real RWA, read and write registers are separate, but this is not the case
with the simulator and thus this danger exists.
One of the most difficult features of the reaction wheels to simulate was the response of the reac-
tion wheel to areset of its Remote Terminal on the AACS databus. A reset of the remote terminal
input/output unit (RTIOU) can be occur one of three ways: the RTIOU can be commanded to reset,
it resets as aresult of a power on, or the RTIOU can reset due to atimeout. A timeout occurs when
the RTIOU does not receive commanded for 250 ms. An RTIOU reset results in the reaction wheel
setting its torque command to zero until further instructions are received from flight software. This
prevents the reaction wheel from acting on an incorrect or obsol ete torque command and spinning
43

out of control. Furthermore, the reaction wheel hardware manager inside flight software expects
to read a zero torque value back from the reaction wheel and will not command the wheels until
this zero is received.

The problem with simulating this reset response is threefold. First, the static RAM card that allows
the reaction wheel simulation software and the RTIOU to communicate does not include a channel
to relay the RTIOU reset information to the reaction wheel assembly simulator. Therefore the soft-
ware had no direct knowledge of the RTIOU reset. Secondly, the static RAM uses the same mem-
ory locations as read and write registers. This means that if an RTIOU reset was detected falsely
and the software wrote a zero to the torque memory location, good torque commands would be
overwritten. The final difficulty is that the flight software and the reaction wheel simulator have
no knowledge of each others timing. A reset could occur anytime during the simulators processing
cycle and the software would have to somehow correctly write a torque command of zero when a

reset occurs.

44

The first attempt to solve this problem is depicted in figure 5.5. The software nominally runs twice

] N

read torque information

Yes is torque 07? No

set flagy =1
No |
i

set ttmyp_torque=
torque

is flag=147?

set torque=tmp torque

Set readback =
zero

set flag =0

v

propogate state

Figure 5-5 First attempt in solving remote terminal reset anomaly

as fast as the flight software, so the simulator should expect a new torque command every other
cycle. Thefirst action isto read a new torque command and overwrite the RAM memory location
with a zero. Then the simulation continues using the read in torque command. It also copies the
command to atemporary buffer. The next cycle, the software expects a zero (which it wrote) since
no new update has occurred. If thisis true, the software acts on the previous torque command that
was buffered and propagates the state again. Finally, the register is read a third time. If the zero
isstill present, the software assumes that a reset has occurred since it did not receive a new update
and thus acts on the zero until a new update is received, when the cycle begins again.

This method did not work well. The software overrode the good torque commands with zeros in-
correctly and the simulator failed. This was caused by the fact that flight software timing is not
exact and synchronizing the simulator and flight software was too difficult in areal time environ-

ment. This can be seen be examine the following databus transactions

96-264/1 8:30:52.153 bm_d_rwx2 = 000eae0407074001004006 65 c096

96-264/1 8:30:52.235bm_s_rwx2 = 00 100706ae09e00000ffO00dI1 65 c072

96-264/1 8:30:52.278 bm_d_rwx2 = 000eac0407074001004006 65 c096

96-264/1 8:30:52.360 bm_s_rwx2 = 00100706ae09e00000{f000d91 65 c072

96-264/1 8:30:52.403 bm_d_rwx2 = 000eae0407074001004006 66 c094

96-264/1 8:30:52.548 bm_s_rwx2 = 00 100706ae09e0O0000ffO00e89 00 c093

96-264/1 8:30:52.590 bm_d_rwx2 = 000eae0407074001004006 00 c061

96-264/1 8:30:52.673bm_s_rwx2 = 00100706ae09e00000ffO00d89 00 cO8f

96-264/1 8:30:52.715 bm_d_rwx2 = 000eae0407074001004006 65 c096

96-264/1 8:30:52.860 bm_s_rwx2 = 00100706ae09e00000ffO00e89 00 c093

46

96-264/1 8:30:52.903 bm_d_rwx2 = 000eae0407074001004006 00 c061

96-264/1 8:30:52.985bm_s_rwx2= 00100706ae09eO0000ff000d89 00 c08f

96-264/1 8:30:53.028 bm_d_rwx2 = 000eae0407074001004006 65 c096

96-264/1 8:30:53.110 bm_s_rwx2= 00 100706 ae09eOOOO0Off000e9 165 c076

96-264/1 8:30:53.153 bm_d_rwx2 = 000eae0407074001004006 66 c094

This data is from testing on GMT day 96-264 in CATS. Data denoted at bm_s_rwx2 are source
bus packets for RWA2 (from RWA?2) while those denoted as bm_d rwx2 are destination bus pack-
ets for RWA2 (from the AFC). Appendix A has a complete RWA bus data decoder. the critical
information is decoded and explained below.

The first source packet contains a OX66 (denoted by the spacing before and after) which is the
torque command read back from the reaction wheel. (OX66 = 102 dn [dummy units]. This corre-
sponds to a torque of 0.14 Nm) The next destination packet writes a 65 to register 6 (the torque
register). Thisis acted upon and the RWA reports back a 65. This happens again with no incident.
But observe what happens at 18:30:52.403. The flight software commands a torque of 66, but the
RWA is delayed in responding until 18:30:52.548. Since the flight software commands a reading
from the reaction wheels about 4 ms before the bm_s_rwx?2 data appears, this corresponds to a de-
lay between flight software commanding a torque and reading the reaction wheel of over 140 ms.
This delay results in the simulator reporting a zero as a read back, since the software believed an
RTIOU reset had occurred. Flight software responds by requesting a zero and verifying it reads
back a zero. This happens at 18:30:52.673 and thus flight software commands a torque of 0x65 to
resume processing. But again a delay occurs and the torque returns to zero. The simulator/flight
soft ware combination break this pattern at 18:30:53.028 and nominal operation continues.

Bases on this information, it was deemed essential to support as many as three simulation iterations
between flight software commands as well as to minimize the writing of zeros to the torque com-

mand. A new method was devised to met these additional requirements.

47

This new method is shown in figure 5.6. This method uses the torque enable flag, which is set to

/

I read torque information |

No /\ yes
is enable zero
is flag =1

et flag =
S } /\

No
selflag =1

_[__]

set enable =0xFF

~

1

set flag =0

\

propogate state

Figure 5-6 Second attempt to solve Remote Terminal Reset Anomaly

48

zero by the flight software each time a torque command is sent. The torque enable command is
monitored at the beginning of each iteration. If the torque enable command indicates new data has
been received, then the simulation accepts this data and resets the torque enable command. The
simulation then acts on this new data until 3 cycles without an update are complete. Then the sim-
ulation software sets the torque command to zero and acts on it as well. Thus the torque is set to
zero only if no updates are received for three cycles.

This method was much more successful and the results can be see in figure 5.7. The reaction wheel

60 T T LA B ' l T

-RWA2_rate

€ - 9

50_’ Q [e)

N
o
I

|

Angular Rate [rad/sec]
s
T

N
o
T
©

10

L& I |

@ A

0 2
700 800 900 1000 1100 1200 1400 1500 1600

Time [see]

1300 170C

Figure 5-7 Successful restest of remote terminal reset anomaly

rates follow the idea rates computed by flight software very closely and the torque command re-

mained constant even in the presence of an RTIOU reset.
This modeling revealed an important consideration in real time simulation. It is critical that the

49

simulated wheels have the same access to information that the hardware does. The reaction wheel
simulator does not have areset line, nor does it have separate input and output registers. This lack
of information made the RTIOU reset response a much more difficult item to model. Thisis an
area for improvement for Cassini’s Reaction Wheel simulator. The presence of a torque enable
command was fortunate and allowed the software to model the reset response, but the software re-
sponse is difference from the real hardware because the software and the hardware have different
information available to them. '

A final concern is the impact on fault injection. It has been decided that no fault injection would
be conducted in the ITL or CATS with the RWA simulators. This is due to the same decision that
impacted the fault injection of the IRU. Since no real command path exists to bias the tachometer
of areal wheel, no attempt will be made to do the same with the simulator. In addition, the timing
issues discussed above makes it impossible to guarantee that a particular flight software command
will generate a particular response, so injecting faults such as an incorrect torque readback during

aflight software cycle is not possible to simulate.

5.2.2 RWA Dynamics Model

Description

The reaction wheel dynamics model consists of a C program that is designed to simulate the reac-
tion wheels in order to generate torques to apply to the spacecraft dynamics model. The model
receives three pieces of information from the assembly simulator described in 5.2.1 above: the
commanded torgue which is read back from the assembly simulator, the tachometer reading from
the assembly simulator and the time of the torque command read back. This information is used
to drive the dynamics model as shown in figure 5.8. The first step isacall to DARTS to compute
the angular rate of the modeled wheels. Once the rates are known, the model computes a rate error.
First, the time since the last calculation is computed from the timing information. Second, a rate
sample is calculated using the tachometer output and the elapsed time since the last calculation.
Thisrate sampleis put through alow pass filter that combines the rate sample with a previous rate
estimate to obtain a new rate estimate. The purpose of this step is to limit the amount the rate es-
timate can jump in any one iteration. This rate estimate is then used with the rates of the DARTS
wheels to obtain the rate error.

Oncethe rate error is known, the model computes the torque to be applied to the simulated wheels

50

inside DARTS. First, a correction torque is computed. This correction torque is a function of an
estimate of the drag torque and the rate error. The rate error is aso used to compute the next value

of the drag torque estimate. Finally, the torque applied is computed by subtracting the correction
torque from the commanded torgue.

Tachometer

utput corr .
+ tor — trq_applied
T [
torque - +
estimate M
A Y an
scale w_kp
A
\ 7 ‘Commanded
[sil § Torque
rate
error
rate
rate
sample . -+ estimate
> low gain ' DARTS
l,. —+ — rates
low gain
2

/

Figure 5-8 Reaction Wheel Dynamics Model Controller Block Diagram

Validation Testing and Results

To validate the model, conservation of angular momentum was invoked to develop predicts for the
simulated spacecraft rates as follows:

H=1Io (5.1)
‘XX, sic®xsic (; re‘lﬂrelx (5.2)
Ox s/c rlw—er (5.3)
XX,S/C
Where

I xx.s/c = Principle Moment of Inertia, X axis, Spacecraft
wy s/c = Angular Velocity about X axis, Spacecraft
Igw = Moment of Inertia, Reaction Wheel

ol

orw = Angular Velocity, Reaction Wheel

1 = Direction Cosine transform from reaction wheel to Spacecraft

Therefore, the effect of a reaction wheel’ s velocity on the spacecraft could be predicted, knowing
the moments of inertia of the spacecraft and reaction wheel, as well as the transform from reaction
wheel to spacecraft. The results of the testing was that after several coding errors were discovered
and fixed, the model did match analytical predicts to within 1 e-4 radians/second. Model Valida-
tion uncovered one particular feature of the real time simulation that almost prevented the dynam-
ical wheels from functioning before it was fixed. The problem was with the corruption of data
coming to the simulator from the blackboard. The simulator assumes that the data it receives is
valid and relies on thisinformation to track the reaction wheels on the spacecraft side of the simu-
lation (real or simulator). This means, for example, if the timetags used to determine the new speed
of the spacecraft wheels are corrupted and the change in time is falsely computed to be extremely
small, the model will compute an unusualy large rate estimate and attempt to torque the dynamics

wheel to match this incorrect rate estimate. This resulted in several problems that had to be cor-

52

rected. For example, figures 5.9 and 5.10 shows data from GMT day 96-233 and 96-235 where

0.2 L - L M

X b_ang rt_z

015 -

©
—r

0.08| < g

Angular Rate [rad/sec]

005!

-0.1

1.37 1.375 1.38 1.385 1.39 1.395 1.4
Time [see] X 10y

Figure 5-9 Reaction Wheel dynamics simulator anomaly- 96-233

53

0.1 T T T T T T

0.08

0.06

0.04

0.02

Angular Rate [rad/sec]

-0.02

—-0.04

1.408 1.409 141 1.411 1.412 1413 1414 1415 1416 1417 1.418

Time [see] XlOA/

Figure 5-10 Reaction Wheel dynamics simulator anomaly- 96-235

the reaction wheels spun out of control and later recovered. Examination of the model software
revealed that this second order behavior would be possible if the software received a small change
in time estimate (used in the computation of the rate sample and the drag torque estimate). This
would result in atorgue sent to the dynamics wheels that would be unrealistically large based on
the unrealistic speed and drag torque computed, and the rates would jump as shown. When the
next update was reasonable, however, the rates would decrease and the wheels would gradually be
brought under control. The response is second order due to the proportional plus integra controller
used in the dynamics model. To “correct this, a limiter was added to the drag torque estimate
(shown in figure 5.8). Filters were also added to the incoming tachometer and torque data, as well
as software to limit the change in time estimate to within 25 ms of the expected value. Initially,

the necessity of the limiter on the change in time estimate was not discovered and when the time

4

is was not limited (and only the drag torque, torque and tachometer filters were activated), the error

became afirst order response, shown in figure 5.11. This is because the drag torque filter limited

0.05

-0.05} -

Angular Rate [rad/sec]
S 5
o [
L

-0.2f(

-0.25}

1 1 1 \ 1 \ | 1 1 | 1

8180 8190 8200 8210 8220 8230 8240 8250 8260 8270 8280
Time [see] /

Figure 5-11 Reaction Wheel dynamics model first order anomaly

the integral controller, but not the proportional controller could still bein error if alarge, incorrect
rate sample was computed. Once the change in time computation was limited, the model did be-

have as expected with no anomalous error responses.

55

5.2.3 Closed Loop Simulation

A closed loop flow diagram is shown in figure 5.12. This configuration was used to rest the AACS

-

\
|

| AACS Databus
\

Tachometer
_ < Data 4
Reaction Wheel Commanded
Model
Torque
Status
/ Data Bus |
Monitor
Simulatpd Simulated '
Wheel wheel |
Rates torques |
|
Y '
New |
. RWA or
Dynamical
DARTS State | girwnﬁlator

Dynamic —> [
Simulation \
\
\

Support Equipment : Flight Equipment
\

Figure 5-12 Reaction Wheel Simulation closed loop diagram

during the operational modes (OPM) sequence testing. The OPM sequences test the reaction
wheels during a series of precision pointing maneuvers simulating science data gathering opera-

tions when Cassini performs its orbital tour. The desired profile of the spacecraft angular rate is

56

shown in Figure 5.13. The data was generated during flight software testing on the Flight Software

Spacecraft rates, FSDS
0015 T T T T T T

0.01 r]

T

0.005 7

Haes raw/s=Cj

T

—-0.005

T
]

-0.01

_0 O 15 1 1 1 1 1 1
' 0 2000 4000 6000 8000 10000 12000 140C

Time [see]

Figure 5-13 RWA OPM Testing- Flight Software Development Station

57

Development Station (FSDS). The next figure, 5.14, shows the results from the testing in CATS

f Spacecraft rates, CATS
0.015 T T i i T T
0.01
0.005
o
1)
w
9
©
st 0]
()]
[]
©
o
-0.005
-0.01
_0015 1 1 [1] L
0 2000 4000 6000 8000 10000 12000 14000
Time [see]

g

Figure 5-14 RWA OPM Testing- CATS

on GMT day 96-237. The spacecraft is under reaction wheel control for the second part of the se-
guence. This section can be identified by the reduction in noise of the rate plots. The CATS tests
matches very closely with the FSDS run and the closed loop performance of the RWA simulator
and the dynamics model was verified.

An important lesson that was learned during the RWA closed loop testing is the value of simulators
when software is being tested. As the complexity of software grows, the chance that something
will operate incorrect] y grows as well. Thisis evident from several flight software tests when the
software reaction wheel manager was acting incorrectly and was sending torque commands to the

reaction wheels periodically. If these commands were sent to the real hardware, the results could

58

have been very unfortunate and the hardware may have been damaged. Thus, the simulators

played acritical role in closed loop software testing as well.

5.3 Evaluation

The reaction wheel simulator is the most complicated software smulator due to its internal dynam-
ics and the importance of timing associated with it. Both functionally and in performance, the
RWA simulator closely matched the real hardware. The laboratories relied heavily on the simula-
tors during testing and they performed their functions well. Validation activities for the reaction
wheels revealed the problem of data corruption within the simulation. This problem was sur-
mounted by implementing filters on incoming reaction wheel data. The fact that the flight and sup-
port equipment software do not talk to one another resulted in a difficult implementation of the
reaction wheel RTIOU reset response as well. However, even with these problems, the RWA sim-
ulator permitted effective testing of the AACS.

59

Chapter 6
Conclusion

This thesis has investigated the use of simulators during the testing of Cassini’s AACS. The sim-
ulators have al met their requirements and testing in the three laboratories was improved through
the use of these smulators. There are severa lessions that have been learned during the testing
period.

Thefirst lesson is the importance of clear requirements and objectives in simulation. For example,
the fact that the EGA simulators were never meant to simulate a leaded EGA led to the activation
of fault protection during ATLO testing. It was the misunderstanding of this fact that led to the
fault protection event. An example of clear requirement understanding is the IRU SHARC simu-
lator. It was clear from the beginning that “the support equipment software would not smulated the
actual BIT or software download. Since this was specified, testing of these functions was handled
elsewhere and this clear expectation led to effective testing.

A second lesson is that there is a tradeoff when deciding on additional command paths in simula-
tors. The Cassini project decided not to add any additional command paths. The advantage of this
is that the simulators act just like the hardware in terms of how it interfaces with the support or
flight equipment. The disadvantage is that the ability of the tester to inject faults into the system
is compromised. The simulators could not be forced to report false information. For example, the
only way an IRU simulator could report bad data is if the dynamics simulation reported incorrect
data to the IRU. Thus the designer of a simulator must decide between increased ability to inject
faults and a simulator that is more like the actual flight equipment.

A final lession that applies not only to these simulators but to the laboratory environment as a
whole is that in rea time simulation, timing is everything. This was demonstrated with the
RTIOU reset response simualtion as well as the data transfers between the aspects of the simula-
tors. Loss of data bween the RWA simulator and mode] caused testing failures and the biggest
problem with the support equipment software as a whole was data loss and corrupriton. Real time
simulation is agreat asset and an indispensable tool, but care must be taken to preserve data integ-

rity to ensure consistent and reliable testing of subsystem hardware and software.

60

RWA -

References

[1] Dahl, P. R. Measurement of Solid State Friction Parameters of Ball Bearings. NASA Docu-
ment ID 77N33528. 10 March 1977.

[2] Graves, Rick D. Cassini AACS Support Equipment Hardware Design Requirements and De- -
scription Document. JPL EM 343-1318, Rev. D. 15 September 1996.

[3] Jain, Abhinandan. DARTS- Dynamics Algorithms for Real-Time Simulation of the CRAF/
Cassini Spacecraft. JPL Document D-9308. January 1992.

[4] Montanez, Leticia M., custodian. AACS Cassini Support Equipment Software Design Re-
guirements and Description Document. JPL 10M 3413-96-122. 12 April 1996.

[5] Rittmuller, Philip A. ITL Testing of the Engine Gimbal Actuators. JPL IOM 3410-95-224
CAS. 15 June 1995.

[6] Walker, W. John, ed. Cassini AACS Interface Control Document. JPL Document D- 12463.
Cassini Project Document PD 699-113. Issue #2, 16 June 1995.

[7] Wong, Dr. Edward C., ed. Project Cassini Control Analysis Book. JPL Document D-9638.
Cassini Project Document PD 699-410. Update #2,31 January 1994.

61

Appendix A: Reaction Wheel Databus Transmission Decoding

In section 5.2.1, databus transactions revealed difficulties in simulating the reaction wheel’s re-
sponse to a remote terminal reset. This appendix shows how that data was decoded.

All transmissions on the AACS databus are known as packets. Commands from the AACS Flight
Computer are denoted as reaction wheel destination packets since they come the AFC and the des-
tination is the reaction wheel, The designation for this packet is “bm_d_rwx2”. This stands for
bus monitor destination packet for reaction wheel electronics 2. There are two types of messages
that the AFC sends to the reaction wheel-- commands and requests for data. A typical command
packet is shown below. In the following explanations, a word is defined as four hexadecimal digits

and a byte as 2 hexadecima digits.

bm_d_rwx2=000eae040707 400100400665 CO 96

The first four hexadecima digits (OOQOe) are for support equipment processing and is not used by
either the AFC or the RWA. The second “word” consists of two parts. Oxae denotes the address
of the destination and stands for RWA2. 04 is a control byte that tells the RWA how to respond to
the command. In thisinstance, 04 simply means that the packet is a command and is coming from
the prime AFC. The third word tells the reaction wheel that the source was 07, which is AFC-A,
and the number of bytesin this messageis?.

The commands start with OX40. The OX40 is a command to write data to a remote terminal address.
Specifically, in this instance, it means to write one byte of data, starting at the address specified by
the next byte. So, the 040100 is decoded to mean write one byte of data, starting at address 01,
and that datais OXOO. Register 01 of the reaction wheel’s remote terminal is the torque enable com-
mand, so the AFC is enabling the RWA to accept the torque command.

The next command is similar. It reads4006 65. This means to write one byte of data to the reac-
tion wheel, starting at address 06, and that data is 0x65. This register is the torque command reg-
ister. It is this register that we observed to fluctuate unexpectedly during the RWA RTIOU reset
testing.

62

The final bytes are CO and 96. The OxcO is a “no operation” command and is needed to expand the
packet to the correct length for the databus. The 96 is the checksum of the command,

A packet from the AFC to request datais similar to the command to write data:

bm_d rwx2 = 0012 ae06070b 0002010300050006400400 10

The first three words have the same definitions as before. 0012 is used by the support equipment,
ae06 says the destination is the RWA2 and the command is from the prime AFC (OX06 has identical
meaning to 0x04), and 070b means the source is AFC-A and to expect 11 bytes in this packet (0xOb
= 11 decimal).

The first command is OXOO02. This means collect one byte of datafrom address 02 (read to load
RWA tachometer register). 0103 means collect two bytes starting at address 03 (upper and lower
bytes of the tachometer). 0005 and 0006 decode to collect one word from registers 5 and 6 respec-
tively (RWA line current and torque command wrap around). Finally, 040400 is a write of one
byte to address 04 and that byte of datais OXOO. The Ox 10 is the checksum.

The second type of packet on the databus is from the RWA. Thisis denoted as bm_s rwx2, mean-
ing bus monitor source packet from reaction wheel electronics 2. A typical reply is shown below.

bm_s_rwx2 = 00100706 ae09 eOO00O0 ff OO0e 9165 CO 76

Again, the first word is for the support equipment, the second denotes the destination as 0x07
(AFC-A) and this time the OX06 isignored, since the packet is not from the bus controller (AFC-
A). ae09 decodes to mean the source is RWA2 and the number of bytes to expect is 9.

Thefirst part of the reply is OxeOOOOO. In binary, thisis three 1's followed by zeros. The three
ones denote this packet as a reply and the zeros indicated no errors in this reply. Next comes the
data in the order requested from the AFC. This packet was generated in response to the command
to request data that was decoded earlier, so here is the data requested from registers 02 (0xff) ,03
(0x00 Oe) ,05 (0x91) and 06 (0x65). Again, register six contains the torque command wrap-
around that was observed to behave anomaously during testing. The CO is again the “no operation”
command and the 76 is the checksum.

63

Appendix B: Source Code for software simulations

The following pages include the source code for the following models and simulations:
.Reaction Wheel Assembly Simulator

.Reaction Wheel Dynamics Model

.Engine Gimbal Actuator Dynamics Model

Inertial Reference Unit Assembly Simulator

Intertial Reference Unit Dynamics Model

64

a ey

io

r

e pe

N

in cyc

based on 400

angle

late

lcul

1
4

0 ca

-

used

.

1ru_cycle_time_s

-e

N

doub

asm_iru.c

S

EXD

4

s

-

20 52 43 1

7/02/28

199

5

ru.c,v 1

asm_1

:08

12

.
.

b
-
=
o

16
I+
* sTd:

*w/

Hz

sec,

> %

I
)<

Hz

based on 400 Hz
angles

1

4

, a

3

N
1

200 sec based on 100

*/

**y
J*

5

ru mode va

rad
inva.

/** rad/cycle **/
Jaw

0x0080;

ay_t

,
*/

ron

i

.

1.
e_AD;
1;
A2;
BO;
Bl;

D
yrosatr_de
-
id
nvalid =
ri2

3

t
aglf2
le
le

angle

noise_am

rers

taval

3

imet
timetag0 2
Y

_angl
__ang
_ang

_da
iru_data
_gyrosa
t
roA_angle_A

iru_noise
iru
iru_a
iru
iru
ru
YIOA
YTOA
YYXOA
qyroA

Y

i
a

a

iru
a

a’

-

ic iru parame

in

d
rua parameters

e
e

‘
1

_
unsigne

doub
doub

in

/** gener

"y

£/time . h"

)

o}
<y

_irua
irub

0

he

irua,

(&assem_irub,

pokefR ()
{fassem_rwx

c
*assem
*assem

th. h>
"hlackboard.h"
"ser;erDemo.h"
"sebbdef
P

*
“/usr/vw/config/hkv

“vme_addresses.h”

<ma
{&assem

assem_bhoard card[h!

=

clud
nclude
nclude
nclude "assembly.h
xtern char

extern char

M
3
3
3

#define check_a

#
#include
#include

#

¥include
extern int
ext

struct

#
e

b4

[al}

L1 0 e
IS IR T ST < T <R < =l < o}
B R T B R]

[N AN S <Y
OO

OO OO

4

wxX2,

e_C1
c2;

gyroA_angl
ayroA_angl

e

0,
n
0,

wx3,

r
b

{&asse
‘&ascem
{gassem_rwx4,

Ol O
f\l x{l K{I <| m
@ ¢ Qe
i e et e
o oo o b
o ~ Ok o8
T *+ @ © @ @©
} * LU |
X Moo ;Mo
[e] nw oo 0o
I [T A I Y
> [ol sl
o AR eI« B el o]}

iy

£

©

M

o

0.

0

]

M

-
4 « 10

= > fan

~ ERA IR e phe

e

OO0 OO
oo oo
OO0 OO
OOO0OOo
OO OO
(RS RN aI « i)
O OO OO
OO O OO O
T O OO0 O
M
MW~~~ . ..
LVoooo o oo
;)I .~ s m s
floc © O O O
0o 0aooo
A

[
o O O oo O
‘ccodoao
oo ddo

SR << <N<T=1

0

YO O OO
PR

assem_poaqpl =h

struckt

-

in

oo
e}

Fale)
oo o O

int
ne
nt
in%

3
35

nooo
O o oo
Voo
MO O O
[

O OO

_c

(SIS

OO

O OO

hoard checkpoin%?2

0

OO

o O

NN

assem
0

O
3}
M

0
4

<)
4]

an

int

[

<)

<

o

=}

I

<)

o

“

(<)

o

[

(=}

o

<

atus words **/

-

e_D2;

4

o
o

ang

read seqguence s

qyroR
gyroB

iru status

+
-

3
AR

A

N opyer v/

an

-

ulate no download wha

im

to =1

flaa

2

P

OO OO0 OO0 ~

(=}
oooooooooc;c;c;o‘o‘é
e e e e P A
[I TR I B TR N O T VR T WO TR TR TR TR
A O O et OOl OO
T L mm el TVY I I E E ~
P Y O VIR VI VI O VI YO YA SR ST
©U > > UL 0

L S S S S TS VL RS S N)
S SR ST Sl i <l < R < S O T S = B B i =
R I B B e s s I A BRYS G R R

~ G
* Ui
~ x
* *
> O
a +
Yoo a *
a Dt .
9
P S)
~ YO T w ~
* [T} o O *
* o H O ¥
~ - o O
k&) * Mo O W
N * o O
© P o
< M ob U - LRI}
Eel O 0 m E MO o
PN e} -~
E [CN] * 32~
Q T © O *
[Y1y LR S s]
S] s N
¢ v O O O et
ko] roedou o
© © o © o >y
U] O 0o [« Ne)
- non o 4 o
1 |20 &)
b n < U O
[+ @i Q0 jol < W]
n D E O MooN ™
w L0 -AO <0
-s © O ri~ 0
't (e8] w
@ SEE + kS
S ® . .o * o~ O
~ N~ ~ o
w * <
3 ~ Y
4 * < v Q@
T * - w
43 ¥ ~
w B o [T &)
2] - N ©
Y 4 e [NV
a | N O oo ~ A
k3 " OO E 0
Q 4 O OO N [R
Q, i O OO o et
Y OO M < | ©
* O O - o L QO
.~ * O OO O > i@
(&) .~ = < Uy o~
3 SO~ < | wn
I Y o i o e
Il [\ s o (LS
J el 0 U > M
[4 [MO
o O .- s} oo e 1 a
R L I > 30
£ U kel | U o [SIY]
z 0~ £ wel 0w ~ AN
Q ot 2 o © O E E ~ el
T 0 3 D s o U
s Q’ 9] LT o8 NO
v | L | IS
L R [e] S 333 3@ A
[V ST) 4 MR oMM~ N UE
L RERIS BT [} Rl B BT B B IR
I * e
Y1
4] o
[\ [\ ()
i %) -
© Iy
o < ©
5] [« S
™ o
jal < 4
Y w SO0
B I A e IR)
MO o 0.0
404) * O30 0 3 H e
[SEN =l * O O O
DY RRYS I ~ Y s s T T~

time

iru_cycle_

97/03./31
16:12:08

/** summation angles for a particular gyro **/

int dyn_iru_razel2)74);
int angular_ratel2104! = (0, 0, 0, 0, 0,
int dyn_rate_availl2! = 10, 0);
in% internal_angular_ratel2!'47;
int Eanglel2)147;
double DEanglef21747;
int iru_noise_index2! = 10, 512};
int iru_gyrosatr_delay'2]14];
double iru_noise_array[1024] = (
~1.726214048501746E-06, 1.25455292857643E-05,
740E-056,
1.48657820558932E-07, 1.31909572445218E-05§,
985E-0%6,
5.50103664136200E-07, -1.1054535622116KE-05,
270E-09,

~5.35845713222801E-07, 5.61465696601252E-07,

1.9662509262423148-06, -

-1
w
~3
e
3=
i)
Afed
W
e
)
-3
N
s
e
w
o}
1
=)
3

037252228146529E-07, 9.94766742425102E-07,

1.45R0084119060671E-06, £.21722766849071E-07,

1.62154094216924E~06, -1.08010263792116E-06,

7.546296491740908-07, -1.8126520905774R9E-06, 1 071670KR5L7TS1E-NK

ja s
0
)
o
s
s
)
o
IS
>
)
>
>
his
(5,1
5]
i
=)
>
"
Vo
o
2
EN
e
o
o
W
w
T
2
e
3
o
2
11
1
o
'S
-

asm_iru.c

5.836416866R7984E-07, 1.278002367515

3.5230531027R1228-07, 1.97762334534¢%

1.87654872197036E-06,

o

.46774260010
-1.0094472275241RE-06, -1.15442740

~2.91091552437990E-07, -4.02138542882

an
m
o
[
<
S
e
an
o
=]
-
m
1
=Y
N

, 12312015952
-1.21746747604R19E-06, 9.0151 123643
1.47029802597954E-06, 5.170 S525500
-2.24485051447476E-09, 1.993553427¢
, -1.7271529232

10758721735874E-06, -5.54 94368R0D

1
D
§a
0
0
0
0
0
+a
I
I
-
>
w
-~
i1
|

o]
N
[
el
i
[y
o
w
~3
wu
()
(&,
(=]

7.09007763252420E-07, 5 888 R(0143465

-1.92535161918240E-07 1.535 9509241

1.78328177877978E-06, 6.2921558560

4.17275352452774E-07, -1.674054R0R32046E-06, -4.49952510210284E-07, 7.7 082175944
£4R3E-07, '

-1.441048% 64333 626E-D5, 5.4296 R5402514598-08 , 4.71921 276477766E-07, 1. R1113556398
642E-06,

1.69315758125426 s-05, -1.42 2208912 67270E-056, 5.5200662395432 7E-07, -5.9939492325
444 2E-07,

1. 8521526379300 28-06, 5.5722 °653352391?-07, ‘1.0254 8027574458 E- 04, -4.51517 257405
522E- 07,

-2. 24772562 2156RDE-07, 1.9462 R405238477E-04, -5. 0731410278 76498~ 07, 2.54364 CRA2S
22745- 07

(3671667667 2693E-06 , 2.3704 8927867321E-07 | -1.39R87447 R149150= - 06, -1.4318018727

97925~os,

1.78650428 1657R1E-06, 4.715 909622 851218-07, 5.82747392627 R38E-07, 1.25700574559?
40E- 06,

8.54 29842773390RE-07, 1.15032434074553 E-06,1.4751909964743 8E-06, -1.10765149777
967E-07,

-2.449262105 PL7956E-O7, -1.7 RO01776541864E-0 5, 1.50177277611941 £-06 , 7.9179230473
5724E- 07,

1.451712 88507676E-056, L20067620001 R41E-06, 9.0270744 07019758-07, 4.3516559
9°7524’ 2S-57,
1.79991320030200E - 06, 5.5640965 1324016E-07, 1, 772452559155453- 05, -1.6221909

27227222-0.5,
2.012491 BA543932E - 07, -5.8044071 8743441E-C7 | -1. 8912422248 7262 E-06, 2.228081
87526834E-07,

7.8 90575562 795 9E-07, 1 0636037 5823128E- '25, -4.4261479932 875 Q0E-07, 1.8 855745
6849962E-05,
5. 2402759 R462745E-07, -5.52 984821403871E-07, -1.7537575145 8581E-06, -1.32074
373287554 £
”195875 RR15R815E-06, =-6.1911108444 9417E-07, 6.396559 94292808 g-p7, 9.1592822
43293195-07,
-5.31747644 225551E-07, -1.3992405351400 8E-06 -4.4422246 0900216E-07, 2. 63584
5768R835378-07,
1.404292244242808-06, ~1,40392070621322E-06, 9.5156160587 8006E-07 , 7. (73943
7291512E-07,
1.827972%6

CRA4A0IE-06, 1,58241141211051E-06, 1.50007R86949 2485E-06, -5.75 ano3
66589034E-07

-.97"27872653749!5-07, 2.641780596R44998-07, -1.60523 R20260729E-06, -1.69055
2355977955 06,
R51033503859678-06, £, 6550081487144 14E-07, 1.423 007428161275-06, -1. 395507
922337573 07,
2.14327350 R2158RE-08, 1.0425325205955 2E-06 , -1.5794 09747 0LA12E-06, 1.4280464
6560136 £-07,
1.48241 £72912134E-06, 1.92060513692732E -06, -1.596 ?12895003455-05, 4.54412??

5798708E-07,
8.5 220062047041 28-07, -1. 9220 782 64900 84E- qg, 1-133% 05070142465-06, 1.5 akss52
a

1.44863697 934359E-07 |, -1,7932642 1187654E- 07, . 1.24R%90427394126E- ng, 1.159205
545 03200E-06

1.14529558676094E- 06, £.215085772956808-07, ~4 . 20R021144424049 E- 07, 1.2479552
6614293 E-056,

1.22 4726444090228-059.009252226273% op_n7 . a7 9614243051778-0 6, 1.1536371

BA24144E-05,

2.31326153061 842 E-07 , 5,214 41462727
58846417E-05,

-5.7549222689923 gE-07, 1.4f 804754707333E-06, ~7.7221397 n106793E-07, -5.5126°
090760606E-08R,

1.6550 2962089757
584 106702E-056,

1.36010755 281469E-06, -5. 03405909 827214E-07 -7.0 2168002634733E-07 |, -1.48722
255533739 s- 06,

-1.79521400779159 =®- 06, 2.9904238244 R460E-07 |, 5 1762422 1586971E-09 , 1,293 8349
019’ 99015- 05,

-2.80349833119 223 E-07,
056 854480E-06,
1.794948 R0637382E-06 , -1.44579 0092329938-0

0§, -1.883683378305265-06 , ~-1.7138 7152 1762748 - 07, -1. 7417

00575841E-

05,

1.29925306700325E-06, _1072610906110425-0 4, 1 .92378646027424E - 05, -7.28 7715
R7567957E-07,

8.85240981615573E-C7 | -7.33554 240417747E-08 , 2.38531422 109772 E-07, 5.9046217
1210287 Z-GI,

-1.RR134802845 805E-06, -9, 912525917 R3257E-07, -1
441 2249218-07,

1.4677 8145947215805 ,
97732152 S-05,

1.73654273094053 E-07, -2.74041231740954 =-08, -£.9984084563 58727E-07,
51360226E-05,

1 95007R884509192E- 06, 1.114004737 296268-06, 1.866 18516004195 . 135 -1, 1283380
065987 0E-06,

. 11831871566813 E-07, 3.91261
1.90220 7752259 02E- 07, -5.515 @5309762839E-07, -1 231835

1.023 885

-1, R7174805885068 E-06, -6.01484705836955 E-07, 1.73934313 B91949E-06, -3.79550
983079825E-07,

-4.41674 290433659E-07, 3.07326013353394 E-07, 6.4 8711717542 872 -07, -1, 919021
13557513 E-07

-4.041R85057436049 £-07, 1.22 P21355105149E- 06, 7.32294722564576 -09, -1.R33754

97/61/31
16:12:08

42674051E-06,
€.33016668120087E-07,

6940E-05,
-7.92975967995470E~07, -1

-1.35756812252294E-06, -1.96992884236677E-07, 1.4925662R23

.36830287383503E-06, 1.61828953177913E-07. 1.3573823725

6769E-06,

- /0U840257162548-05, -1.21688324897903E-06, 1.85739472240965E-06, -3.754660577
582202-07

1 07018786131518E-06, 3.37212161683681E-07, ~9.67006652663089E-07, -1.75483927a5
4786E-08,

8 40742858441662E-07, 1.23078415587950E-06, 1.33142462439568E-06. -5.70611762539
8768-07,

-34301617353337E-06, 9.50619231056679E-07, -7.33566737474272E-07, -2.828676422¢

6924E-07,

3.24210960586344E-0G8, -7.00669700322760E-07, 1.19538721345463E-07, 8.33733826245

9.17907934570486E-07, 7.74626653087128E-07, 1.00228745328248E-06, -8.14893860617
-3.65073927029014E-07,
199S0E-03,
-8.34266740577514E-07,
21453E-07,

9.93307062445661E-07,

~4.96250343334988E-07, 5.13002158811809E-07, -2.411124588

-2.93467448804242E-07, -1.07280624724029E-07, 5.782082447

.53511009478703E-06, .21058500579771E-06, 1.72893809561

+.04515012627326E-06, 1.33507133715104E-06, -1.46583591046011E-06, -1.7809566626

~6.18797524057346E-07, -3.61463022654510E-07 -1.950684350

Y8142E-06,

7.93477218988202E-07, 1.26825006916333E-06, 2.96910569402635E-07, 1.798491738377
31E-05,

4.99795228975918E-07, -9.18.15238034508E-07, 1.09253358484839E-06, 1.76334689504
01E ©

++34553597258057E-36, -7.30675696160605E-07, 1.91324302783199E-06, ~1.6172891054
8193E-06,

7.525635716394832-07, 1.17971060874274E-06, 1.11677733047988E-06, ~1.8841454811
7660206,

1.62680035704642E-06, 1.63896927526636E-06, 1.71065364232862E-06, 2.513390801054
§1E-07,

2.011507320141562-06, 1.52618901938237E-06, -1.79083426931540E-06, 8.67213075813
907E-07,

2,71210433266465E-07, -1.35231018608417E-06, -7.2769 293450E-07, -1.483559437
92243E-06

+.92253404873192E-06, -1.58796324344946E-06, 1.76257498004955E-08, 1.07022783695
488E-03,

-9.76706987076563E-07, 1. 7.56368697715501E-07, -3.4055118412

-6.24544353848896 -1.51409572266773E-06, -1.10852496117387E-06, 9.302330995

54976E-08,
-9.0145774612.162E-07, -9.62245291285206E-07, 1.84560922581640E-06, -8.772491537
25697E-07,
-9.5U431401804257E-07, ~4.08335197980622E-07, -6.16812736296086E-07, -4.25814719
wmowmmm|oq
191444204894465E-06, 1.97991813562623E-06, -1.07680782301499E-06, 3.7527885594

1.55897131747282E-07, -1.36559785239195E-07, 2.34756025098133E-08, 2.07179913210

7.47265821 2.5495411897
2022E-08,
-1.55475858390734E-06,

7561.55E-08,

1.1639
154E-07,

-1.70469970128539E-06,
610E-{06,

-1.79812975979643E-06, -1
90097E-07,

397752E-07, -1.10625825090566E-06 -3.00011791692983E-07,

-1.96669018496587E-06 .86938969943497E-06, -1.74298887

0L113248603E-06, -1.0715961355089SE-G6, 8.99054969544711E-07, -5.4621835790

oy

-1.51411694090945E-07, 1.06491589861529E-06, 1.8771770051

o

-3.982705949

asm_iru.c

1.222310489577834E-0§6,
921283E-07,
-1.14050262489990E-06,
92363164E-07,
1.70595627566081E~07,
5164198E-06,
1.27886741755277E~06,
96962215E-06,
~-1.11843576265108E-06,
16308C11E-

91442835

(Tl

1

06,
-1.46980187639019E-07,

07

9

1.0
7516986E-07,
+.20350698055860E-07,
382385085%E-07,
1.28684153035859E-06,
59151224E-06,
..15563175882727E-06,
997129965E-06,
-4.66654251379057E-06,
650131700E-06,
-6.01972502257613E-08,
53458743E-07,
1.28736719741244E-06,
961570393E-07,
3.00827930462534E-0

G65286470070E~06,

w.wawthmqmwmmmomuom‘

-2 mmqmmoqqu:wuon 67,
99934957E-09,
-1.69283173565848E-06,

93830202E-07,
1.73327187425316E-06,
313389E-06,
+.46214358489897E-06,

9714450324E-07,
-4.99917625260191E-07,
7088824 3E-06,
4.03749584698629E-07,
20549222E-06,
6.32687386704880E-07,
61517749E-07,
7.74872155612728E-07,
14282488E-06,
5.8375278738
338226354E-06,
+.40567795831910E-08,

3290E-07,

-1.77461264198676E-06,

-1. mow 7714154906E-06,
12390212E-07,

+.55374735962188E-06,
S57312262E-06,
-8.8086274763...68 07,

637074743E-07,
-3.76000950140394E 0.
956663067E-07,
-7.49887055866940E-07,
321236666E-08,
1.2559495
462E- om

001853E-06,

.35949884031983E~06,

7.48998325723439E-07

.58859076971889E-06,

2.62179110850390E-07,

-1.25041307458337E-07,

1.11165584118435E-06,

-2.62148995167013E-08

.77149079004054E-07,

-1.37676297701536E~06,
-1.63731012182421E~06,

-1.79535219592781E-056,

6.41586794574924E~

-2.56732486021394E-07,

1.34998376279491E-06

4.46

28758723228E-07,

9.72962562283854E-07

-1.90212053713252E~

1.32582093217519E-06

-4.74061276917449E-07

-..7678638031

6 42468745434887E-07, 1.3

3. 2392418643944

1.73832131131716E-06

4.97437221585765E-G7,

4770E-06 6

4.42667696808863E-07 4 .33268823
~1.15545473548479E-06, 7.292062
-1.02851515821760E-06, 1.0664557
-1.65496737493874E~06, 1.151922
-7.04225424307576E~07, 1.817125
1.20300012596829E~06, 6.113321
8.43383321567368E-07, -7.2624642
~1.57322943803512E-06, -6.19782
1.63430724153578E-07, -1.230948
-4.88250168023807E~07, -1.80447
-1.26674146840152E~06, -1.88764
8.70006842020257E-~08, 5.427937

; ~1.730696161694239E-06, -2.59346

, 2.30720321622919E-07, 1.0376663
9.22860458306880E-07, 1.23323626
¢ ~1.59371.49650339E-06, 9.072063
. 59733559469699E-07, -2.273749
38155881380624E-06, 1.59740067
~9.08097650751263E-07, -3.8144

. 1.87720603154433E-06, -1.465780
. +.42762826798333E-07, -1.067627

-6.96961899929453E-07, -6.710117
-1.83732171727967E-06, -1.654327
» =1.55128924432370E-06, -1.52722
-9.23904191663948E-07, 8.387910

2 73176339247771E-09, 1.28894
'1.58598754984561E~06 6.623668

5 29703328658711E-07 1.643496
78859323059671E-07 6 04216
22734 .386 . - E-06, 6.687722

-06 9 78878579355226E-07, -1.02159%

4.94140324887771E-07, 1.6714371

-1.79134631002386E-06, 6.305772

'90-FYGT069LLYS

€925 "I~ 'G0-3 LTZDTYRAG PEC L9 "T- LO-ERPAROSTO6TIETIZ 9- '90-IZETEYHLGS69G80 T~
‘90-FYIBLICTID
TGGTE T - 'L0-8G L09ZS TLLTLEIE T~ '90-F6ZA6TZ808KLET00 T '90-B0EAGLOTLYSERTE T~
'90-ELETBLIGY
QL YL T "9 0-Z T9PSSTYO TTRLLL T~ '9C-ZGYZOTLEQRAZLLY T ‘90-ZCT6ZA0GRB0998T T-

'L0-F6CTEBTTIBTLZS06 €~ '90-AVBZLYYBSO0TTYE T
'90-3TTEGEITHTT
'L0-FLITHEEVEEOTTIO0 Y-
‘9p-38GT8GLT
‘90-Z8BTITIS066TBLGY T
'90-36679¢€0

8ZTOVL €- 'L 0- EZ66G69€£9526L6T T

90 z¢ 1- 'L 0-2GY9L0T 6% 108707 v~ 90-FSY66TOTORRGGRT T~

L8Y0G8Y T ‘90-3F G0 B0OYVSTOTELE6'T ‘LO-FTIPYSYREVTRTOS "8~

£6¢€

9TTHY " T- 'LO-ZTTBLLIRZTZTITO°€ - “LO-ZZ8TTO06LLLOAET T- ‘LO-ZBEGGLTGEENEE3T 6
'90-H9LYESLYE
6122821 '90-F L5Z08YCTEYRT6E T LO-ZE0YYTTIBVELETOY L~ ‘LO-ALYT6TLGIBLOGBY T-

“90-3 SBRT66
‘90-3 LOGRIPTETRY ZLO T
'90-39 6Z8¢Y LE

£9869 TIYT '90-2 5TYSE80S068T CO'T '90-FL9989G0GRTZLLY T

677E 7L T- 'L 0-IS6T6CY60 BEE £0T 6- 'L 0- 300TBYSEOVELIZO Y 100-EELZCRILYAGTOGL T
L0-329006T5ER
02015 ¢ L 0-262686£67006T0 p 7 - S0-EYTYSIVEOTENLO0 (v 1 0.90TG096TTISEETTL 9

'90-F96ETTLGO
‘9 0- Z68G9Y LIESTZELET
‘LD-390T7E9T0 76

68 €€58 "T- "L C-38 LSSGYTEATREYZ B - 'ON-Z TOLGO6TERILYY LT

TR9T 8- ‘L 0-FLBOCLOT SZTERTL O- 'L 0~E0T £L0G9OTALYGY L~ '80- ZSSVLIOGZOEIVET rp-
'LO-FV6EEI8TSH
28776 L- ‘LO- 36260560 TEGTYR 8 - LC-ECYCCOGLOTI0GES 6 T L0-F6Teey 050TVR0ST 6

'90-3 G6T2GE0Y9
‘90-397LA6YEHYOTER VT

‘L0-gLesz ity
‘10-F6T TIGEELYICTES T

‘90~ TCELYRLTE
'LO-FLEEOYLESOZOERY "

SY6EY T- "L 0-2 zRZ0EGLRERDZEN H 9 0- Z000TI6A0RLRGLO T -

189996 L~ '£0-3€159F 9986TC7ES £ 90-3S0TTIYTLETLEEE 1.

80LE8 T~

‘90~ €688 S8TTLYSI00"

IS

9

‘g0~
GZATOP 6 'L 0-36 GBZLGLEYTI9ZL ¢ ‘L 0-308 GE9QT8GZEEIR "V~ ‘L 0- 0 £G6EGRG08 €TV T -
‘90~

60668 C T-'00-FGGLTOLYTLO960T T 9 0-26Y8YIZRZGC9RET T-'L 0-FG6EVTISSRETZO9L ¥
‘L0-2088LG LTI

LL9YTZ € '90- 3T9 LLE9YZEYTIGS "1~ “90-F GYOLTEHTOOEE LG T~ '90-F¢ 769 LU0BBGELTAT
'90-2 920%0 LSS0
TI68T 1T <L0-360 L6G99ZLTEZSY 6~ 90-F TROTTEGGO00TZR T - L0-EYZAT EL6LEIELE LY
‘90-3YELBRIR T96
ZTEET T- ‘90-3 886609GPE0C05E T~ 80-BTGS6Y89TYI0890 T~ 190-395090 ZZ0VE 0G6L T-

QELTVPCB 7' L 0- ASBTE €ZLTOLG0ZT L L 0-2 ZZBYLLBOSE 8YL6 T L 0-T ZY280VEV9L8056° L
'90-3 GE 0L 28L
'L 0-30 THEG00LS09BEE T~
'L 0-387 820760
£68E8L € '90-3690 VEZGEIVGETI T-'90-F LT TTPSE LGTB G9C T L 0-H9 LELBBOOGYTITIRT 8-
'90-3 £5198805
LO-FEPSP8YLRCTYTIOL L-
‘LD-3 Sveg BICY
‘L 0-3 7EVE9E66950LTG 9~
‘LD-Z60V08ET

8E672598°T 'L 0-39F LBT T9509TL0G ¢ ‘0 T-E983ZIVIBEZOTHEY 2

YYY068° 1L 0-309% 8667 05 CE6VE G- "90-3% TG C0GL ERGOL gg - 7T

GE96T0O 8 <90-F VULLVEYEBIBE6E T "90-F LTTE TLEO60GE06 T -

SPGZTET 6~ ‘90-28 £998 L0 C58TF 06" 1 '90-F LATZOBTA0CHSTE T ‘L0O-FH8R0S 96S8E8ERG 0O
‘L0-Z £9798 L20

509 $20° L- ‘90~3D $pL620T9I06Y CV T ‘90-F 00Z95ZZTITEI90T ~1-'90-3 £LZ9YPRLIGSOLO T
'LO-3 ZZSYRTSLRY

9T €0 L~ 'LO-368B6 £OYES TEPBT6 §- '90-F THZ69PTITI0ZRD T - '90-3 GC £8ZRTABIGLTIO T
‘L0-3THOT T6TL L

LT LYY 8- 'S0-F £6L78TBYLE69E ¢ T8 0-F TT0GZE 0TO0L 8T8 £~ '90-T €1606G66% TL 689 T~

‘90-39 S5VEYED

6L6206° T '9O~3806ZLE(BGVLT9V'I-'90—3178993160E7b9?'1 ‘t0- IF9T80R6696G9 T -

YTESZ9EVeL T

TRZETIGHYERS " T

L19609608 T~

$G2GT6TGY "0~

LBEA23%Y26° G-

S6£600627° 8~

TELEYEVQTT T

PYTTLOEOY6 R

£o0zZeE8YEY T

TYAALBYLSON”

LYRLINEEILTE

T60TLO66Y8 9

9STELYTITLET

v0600LELOE T

LEA90T82806°

TB6AELOLIROT

8I»ZOTISE0 9

86ETLELTO9 6

288%98609871"

ovv06620886°

PGREGHBR6L T

£ZTIPVES "L~

6G66LEY0600°

SZOT6EYBSSS”

Zrov08vsT e~

O'NIT WSk

-~ '90-FTTLYREOVRETIZIT T ‘90-F0RGC09Y996EGRZE" T
"LO-FA6EPTRISEAO0LY T~
TLO-F09TLE6LILGI0Y0 T- “LO-FEOGH0TTTO0E26L°6

‘90-ESTTY0OBETOLLTLT T

‘L0-E8TSE9958T9LGE8 8 '90-F8980LZES0GLLEO T~

‘L0-B0ETETC06TEGAG T

‘90-FZYY0069TGEG96Y T '90-F9ZVILTIPIGLGLTT T~

- JLO-F809EYEYTYALYI9 T~ ‘LO-FSHTSTELBYTZIGT”
‘L0-Z9ZSTLOTTLOTZEY v~ TLO-E8LTOTYCESYSTLT T

TT- '90-ZTSNLLGTZYTTTZS T~

T '90-FTEGLIVRETEREST I T- Y00-F0LTSHTIRGYSOOL”

‘T '90-3YR6GR0GTOLYTRT T L0-FS6EY0T099L00EL”

TT LO-FA0YTSBTSRAEELOT L~

‘O0-FQRN0NLENELENTNE T

‘90-ZE6LSLATERBTEIZE T

- '90-BTL6BTERLIGLISH T 'O0-ETGONBGYESRITEY T

'90-F6EETIRTIZGOGKY8 T~ LO-ABGOVETTABEEGHT L

'90-FET9BEYILONATYT T~ LO-ELLETYTLECGETTR R

8- 'L0-FYGTESETLLEOLIR Y 'QO-EZOE6TLO?GZQSQZ'

T LO-ZYTY988E8ITZALS L 'LO-Z099ISYITYGOYRG 8

"LD-Z9G9076ST606L9L 9 '90-FLGLETLEVLEOYST T

- '90-FLYLCAEBOEZSLES T~ "80-3ZITTEY6GI90%€S”
6 '90-FGEY9VTRESYTETO T~ 'L0-F0EATTIRESLOZELO”
T 'L0-20G6E9EYTETRZOV T~ ' LO-HBZYTESLE6GY0GY”
-~ '90-dY60£T7998BLI8SLE T '90-AL0E066TZZIBLOL T
"LO-Z7G0LELTBO0ELSY V- 'LO-HTTO6TLYASYESGD 2~
T 'LD-F6G0BETIBYSCIVIS T (LO-FYVEVETOLLEVE9T T
€= 'LO-ETBETOBBOLEYTEE T ‘LO-ZPPTIG96KTICZIALT”

'90-366680879T5L952 T~ ‘90-F0EST656TC608VZ 1~

fLO-3LO0YL
‘90-FLTELOGOLECYEBY T~
‘LO-FEY8RT
'90-3€66956L800CT09 T~
'80-HYRTIYT
"LO-Z6CLTEELYERTE56 b
‘90-FFTLO
Z '90-FPLGEERRRYLOLINZ
‘L0O-FTHTO
'L0-H99T09LEETERBLGT T
fLo-3nczec
‘LO-FREER6TITILITYL V-

00-TLYY

T ‘LO-E7TOR90%OTEIVOL O
‘ap-395

€ ‘L0-FTEESTYLELOSLLT O
‘L0-Z6E0

‘LO-FEHOHTTOG0OYTGRY 6=

0
=)
|
31
=)
n
®
o
v
n
0
I
il
~
—
o
~
w©
il

T '90-39%56%80095T0YY T

‘L0-38YGT0G9699L806 2~
‘L0-3BYTLY

- '90-FTY9ESZTZGRELOZ T
'LO-36T€S

€ 'L0-F06GG0TZOTLELER €
L0-BTLY

8 ‘LC-FBOEELOTLESE90976

9 'L0-Z6GTS9BTIELERTIT L
'90-F8L80

'90-2LLRIVIOCORGGLL T
‘L0-3580£26

‘90-3PTEESHILIGEYER T~
'L0-300G

- LO-FZALOTTIGSYRETIGL Y
'LO-ZLSO

6 'L0-399069GEPT8LYOY 8
'LO-3TS8STE

‘LO-F0TYYSO8TZTIILYT 2~
"LO-FLSTTZEY

1£/10/L6

TETLRZ T~ 'LO-EGYTRELESESEO00 79~ '90-FSYHZER0THE98L6° T 00-ER fO?E”ZSZ*cScS
LO 2LTOSLL
9TIBEIGT Y '90-EPTIOTTHTSTIOGENG T "LO-FLGERTOLALO90TO 9 'S0-H0THAILSLABEGTIVY T
'90-F78%6754
6BZ6999°T ‘LO-IYLETRIVLLEQNTET T '90-EI99EYE6LASTTER T~ "L0O-HG98968%Z99TTLO G

'90-360966LL07T
66€L565€22°2- 'L0-F0SEABPSSTTOEEY €~
‘90-207LLEYOS

ZETOL'T ‘LO-F6TLE9YYE0SYSET T- 90-E00

LSTZZTE'T '90-FBGEZOESEEVIRLL T- '90-FV069EEIRTSTYAT T ‘90-ETOZELLOLITELYE T-
'80-FTLTLEQYSES
ZHEE9 7~ '90-T9L0TTEESETTETIL T- '90-H0TBILTRELOPZTIEC T ‘90-FL96¥VSTGTIG9TES T~

'90-FLTTIESOE
‘LO-FSTTTLEOPETEG08 2~
'90-FTOYRETL

LLTEET T- '90-ZTRY00%YLZY98F Y T 'LO-ES0Z9089G89¢CE66T ¥

1P020ZL° T ‘LO-F66GG95P92GRZSG9 G- ‘90-TETTESLO9Y96T¥9 T ‘L0O-F6GST6006LLYSSI @
'90-FLSY80S

SPYEEYSR T 'G0-FTSERYTGETAYLTE T 'LO-FELTLLIFBE0TTZ6 € 'LO-FLZELSYEGIRISTE T
"LO-F68BSOTLEOS

L69GY 6- 'O0-EZEGRIYZOPOEPTO T ‘80-HOLLYLELOTGCLET - 'LO-TLO8BOVEOLTEZCL G-
'90-399686L8

L8B6E90 T '90-FL9ZOLLRTIGOGOGT T- 'LO-FZOLTYELESAEATR G '90-FOVPGLTIOTOGSGLE" T
‘SO—EELLtvgez

L6TO6E T ‘90-TLTSHSGSTAENRTOS T~ '90-FL00LLYNRZAZZTIO T “LO-FOARGECETRZHEETO 6-
‘Lo—ateoeszttc

62699 8- '90-ZHZ98CZ00ZLTRGT T- '90-HRRZLGOCGTTIZ0Z6 T ‘LO-TETITEBLLZERIER Z-
'LO-ERTTTIICT

8E€0G9L0"T '90-FTLOTYETTSSCEGY T- ‘90-FELBTINTOA96TTAE T '00-F8THEROETZOOLET T
'90-30068ERES

TLYLDE' T 90-EG6LYLSGTELGALE T- ‘LO-BOLTEYLRGA98YTIZ G 'S0-I0EYPHLTIZOC0LIT T~
‘BO-FCLYSE9GYS

SLTZY 6~ '60-TGREZLTTHZOTGGO T- ‘S0-FBEGOCTYHOGTAG0 I~ L0-F8GOYELTITVIGL9G 8
"LO-FTY96TES

792986¢°9 '90-F00TEZRTSSSEZOY 00-FEZYYRTTETATERE T 'LD-FBZRO96TTIYRLGRO L~

90 ayLLoyte

EGE0RES T~ "LO-YPYRLYCYTOO6LE € 'LO-FLGO090V0LAI0LT Y . 3

'90-3L080ZTSOT
99697 1~

'90-39%09125°
-3%090T00%L8T00G T~

BO-3968TEVSS

vo€9¢€°T- ‘LD-BETRYYYETTYTETS O~

BETOBZ T '90-ZLT LLLESOSTZESS T ‘L 0-30 ZBESSBOESCYG9°5 - ‘90

LY8060° ¢ - - 8G6RTZOGR60YLGL T 'LO-FTSI9ETTTAITBLET 8 "90-FBTYTIGOLZSY YOV T~
'LO-ESETTYRET

09 ZG6L°T L 0-3890 ZLYODOLRYYC Y ‘90- ALTTE6T €IB968ZI "1~ '(0-3VZHTELETZIBETE L-
'90-3987v88S

LGBESOT T ’90-3 9858GT3GS80E0E T ‘S0-H98Y L£669TSTLRO T 'LO-IFLBLBBESOVPROLIE €

“90- JTTLLROT

‘90-Z0 0€0 TZLY6STBYO " T
“Lo-? £2TL0GQTSY

‘30-F ZT0ST9667ZEZ0V T~
“90-36 SLESSLL

AT ZATLTTLTHTIOC Y
"L0- BSYEVROLE

LZOZT06 T - ‘90-T GETLLCYPPYPZLLES T 'L0-22G2Z¥Z LBLOBZIS S

LTYT 72— ‘L C-T0 GLYGSPTLIIOIY 9~ ‘L 0-F Z9BOLT YO0EV9EL ¢~

£TZSOT T 'L C-ATSTZ6Y6LY 2SLL8 T~ 'L 0- 06Z6TG9TT G GLL L-"L 0=

09Gpy ™ LUSE TEB2BOSDTTIVIb- C-ATYEYGY £VGCEILL 6 '30- I¥8YTO0YE08308¢ 1-
‘L 0-390G8L9018

LBTITZ €~ < 90-FLYBTLLOLOYEGL0 "T- '90-F GLGETLE SZYTY 0S° T1-'90- HTR63%99106862T 1
LO-3T608LES

98 TL9TT L ‘L 0-F LTYTZLICLYGL69 Y '90-F STB6TTRIZLE0C T T-'90-3€VLZ88TEGHRIZO T
'90-300%Z667

TEBIGE0 T~ 'BO-A TLEZOTETBRIPSE ¥ 'L 0-3 LBSYBIVETHLYER 6 '8C-FTETEG TZCO LT T8 G

'LO-F €TLSYTEYT

‘L0-39 GGETVEGETTILT €~
‘30-38 Z8TYI0

-2 ¥B9SZVLSBLO9ZY " T
'90-3 65¥59L5TY

‘L 0-F T68TBYEE SVTHTO p- ‘L0-T6 LEC €09L9T0 LLB 1

£9€T0"Z '90-3T8ZSZTE06LATOT T- ,90-F LTBTELIELTSOZT "1~

ST EZTS0° T °90-3 089 Z0B6ESZLIYSY ™ T “90-368688 ZTB99E 19T T- ‘90

LLZLT 1o

'L 0-3ZVBTBYESVYIEYI0 G -

6968C6TSLE L

SZLLOZB06 T

0€ZBZLTEILT

8Z8BIVSY Y-

968180926 T~

GGORAGSTRES " T- '90-F6LTCOAEIETIIOL T

0G0TTI8ED ¥~

LYOLLYBOGE "6~

9L80€92¢ T~

(XA A RRARE- RN

v608Ze8YLB b~

£T67629€622° 1

4

A TAZ B
9076L969920° 1
652ZT20T600°2
L966GYEETL T-
6L8GOLYYTSE T
YREGT0990° 1-
GELTOLEZOLE S
SYeZSESHTT I~
050069999 "o
Z1908TLT9 T~
£8cECRPHOER "9
T6EE LGBTL T~
£8007%6592 8-
g98Y C88TF T-
LLSL8TYLELYS
LSLLLEEELG ¥

S Z02¢99¢EL V-

T wise

'L0-3%8ZTTTTLOTOLYR S

‘90-FERSELTBOLTLEOT

‘90-FL686EY9I9G088G T-

'90-J9886E0GECILEIG T~

"90-3SSYRSTVTEYPGEY " 1-

‘LO-F09LLZPELEPTEET G-

‘80-EYTOLTTITYLECRSO G

‘LO-FTLEEEGOLTELERY €~

‘90-F80RTLACOTHEYOT T
‘90-Z9PHYETECBGYTOEL T
‘90-FVEVGEYBEYTTILIT T
'90-3V6LOTYEGLGTZOE T
‘LO-E6Y0LYRIGESYLEE Y
TLO-FGVYLELOLLSERYIO L
‘L0-FRZGOLE0BTIYTESY O
TLO-BYTPLOSTITIYZITZE T

'80-390TYIBBITEEESL T
‘LO-FESTYEPOTVSISOT L

'L0-3V60LG08IVSRITS 8

'L0-T £TLI00B96V6C96 8-

'90-3 ££9719405282670 T -

'90-3 LSE066T99G696PE T

"LO-3STTTEVROSY VLEE L-

"L 0-3 268CTLIEYBE0TL O
'90-3 LEC €T 0€ S0 Z6ELE" _
"90-3 GY9BGELRTOLEST T
'90-3 LLE0YVEYTTRIZE T -

'90-3 8% LB9IBZIOE CEIV T

‘LO-FTLETBBBYLCOYTE E-
'90-EZYYOLYEOESTELY T

'90~FEEETEREZIGNGRO T T- TLO- 9€BYSBZO¢S*°S

"LO-ATOBTASBO0ASATCO €~ "BO-ZICEZEATPTICOLYE”

9
'L0-36622198%%10667 "¢

‘LO0-3S%979LPZOTI8YL T~
"L0-2T6LESO

‘90-FTLO9ETOESHVPSOG T~ "LO-FCTEGLGSISLI08EG T~
‘L0-TQBSEE

"LO-ETLEQRA9LTAERY TR
‘LO-2ETL

TLO-ZTRLBAGTVLLIYYO 6
‘LO-HLeTYT
‘90-3TVPTIEBTIAYCEAEY T~

'LO-F0G97I65EGETSLE G-

LO-BTZYE8YE6LRGYED L

‘90-FTYI68G09LZ062T T

- LO-ZEYCRGITTEQYISE S LO- “6°LZEO€88’S°ZZ 6

' £Y8TYSLYEE96L 76 (90-3€ TGEE9TISY T
'90-29%9

‘90-2 0LE6YE6TLOLOSEO T '90-F60%LI60608T6TS T
L0-FESTO0

‘O0-EP0LYBTEZGTIRASO T '90-FLY0E0GE600LY0L T
‘an-a3TLL

‘L 0-TYTOCYTY BESE69L T LO-EVTOBYEEYSELELE L
"a0-E5EY

‘90-FZYTLBLESTCOZZE T~ ‘90-FCCC0LOESTTRLED T
"90-FL067

‘LO-EPLYTOCOCCETLIC R LO-BOTGLGZRTORYREG G-
90-3T0L

90-ZLEOVLYEHAGYSR T~ 'L0-HZOGTTVTIGHERLG S

‘90- ZFG8%Y9ZLGLE6ST "T- ‘00-F9E0GRYTGRE6L8T T
'20-3LTQ

‘90-F0LEOB69YB6868G T LO-ALKTHO6THD0RGLE T
'90-F9¢€6L

‘L C-TVE6EOT LLTI96VE 8 ‘90-HO6088T6BELETTIS T
'90-32ZRT6T

'90-FGGLGOTTTLISHTR T '90- BTALEELIOVLLETE y _
‘90- I¥8677

90~ ELG CG08EEEG6E90 T - 'L 0-F LGEEPLITABREYY" T
' 0-35L6

‘L0-3TL8YYRRYTOTELE T ‘90-F ZGREIBTIBEYOTO T-
'50-3 17966

'L 0-30 65T 5eo0TTS828 6= 'L 0- 3L0T90E 19pzeger L
‘Lo-TV08Y

‘L0-F3 TLTIEP6TOY80€°9 "L 0-F TEL0O0ETELISOTE L
'90-39 Z0%9

'8 0- 3TIBTTY09ZSTTO9 € L0~ BOY0PYIZ8 LYYCET 6°

‘80-2227
'90- 80TYS TC €ESTBS T - “60-360 TIVLO60068LG €

‘L 0- 38098
'90-3% ZY8TL99LTIY 0LB T '90-F LTZLLGATAOBSETE -

"LO-F ETLL

‘LO-F6 TT6BEY69 TZSEY - '90-F 676HE0 LELBETBI " T

“90- dZ0ZT5Z99

80:71:91
TEM0LS

/x T = QnAT ‘0 = PNAT 4/ DI @2TAD T NIT aut ‘L%Y 0 ‘0 C%EY <0 ‘0 ‘I%® <0 ‘6EV ‘p ‘g '9€% ‘0 ‘vEw ‘0 ‘0
(DI720TABD NIT)I2S2I NIT ‘TEY 0 ‘6z 'O ‘O ‘ezy ‘0 ‘0 ‘gZy ‘0 ‘Tz ‘C 0 ‘7% 0 ‘9T%
‘O ‘0 gty O 'TTY ‘0 ‘0 'B0% ‘co'goy ‘o Y0 ‘E0% ‘0 ‘0 ‘00%
/xx @POD TPDOW NIT ,,/ ‘o ‘868 'O O 'Skt ‘D 'eEE ‘O O ‘068 ‘O ‘S8BT ‘D 0 ‘sgE ‘0
"€8€ ‘0 ‘o ‘0BE ‘o Y0 YLLE ‘0 ‘g ‘0 ‘0 TLE ‘0 ‘0LE 'O 'O
fy¥seaTdTnat Ut ‘L9€ ‘0 "59¢€ Y0 0 ‘Z9c ‘0 ‘C 's65¢ ‘O ‘LSE ‘0 ‘0 ‘wSE ‘0 ‘TSt
‘n = prTy¥seITNIT Jur ‘o ‘0 ‘6%E O ‘LYE ‘0 ‘0 ‘vE ‘0 'TYE ‘0 0 ‘6EE ‘0 ‘C ‘agg
‘0 = pTBuTtIiTnat aIToONTE ‘0 ‘vEE ‘0 <0 ‘TE€ £ ‘0 '6ZF ‘0 <0 ‘9zE ‘0 ‘¥ZE 'O ‘0 ‘1gE ‘D
‘61€ <0 0 ‘9TE€ <0 ‘0 €IEL <0 ‘TITE “C ‘0 ‘90€ ‘0 ‘90¢€ ‘0 'O
/axy CCPRIDTEP 2q 2saul ued ‘sialswered pasnun ,,/ '€0€ ‘o ‘T0E ‘0 <0 “e6Z <O 0 <S6Z <0 ‘£6Z ‘0 ‘0 ‘067 ‘0 ‘887
‘0 ‘0 'SRz ‘p ‘€8Z ‘p ‘0 ‘08T ‘0 'SLZ ‘0 ‘0 ‘SsuLT ‘0 ‘D ‘LT
‘gooedsy ur ‘0 ‘0LZ ‘0 <o 'L9T O ‘G9Z ‘p ‘Q ‘TYT rp ‘09T 'O 0 'LST 0
!yaoedsy Ut ‘GGT ‘0 ‘0 ‘ZSZ 0 ‘0O ‘6%T ‘p ‘LYT o ‘0 ‘¥¥Z '0 ‘z¥z ‘0 'O
‘gepopoung ut ‘6€Z <0 ‘LET 0O ‘O '¥EZ <0 ‘O ‘TE€T <0 ‘62T 'O ‘0 ‘9gz ‘0 ‘vz
‘yeposoung aut ‘0 <0 ‘1ZZ <o ‘6Tz ‘0 '0'91Z 0 “5TZ ‘0 ‘g ‘tiz ‘0 ‘0 ‘0%
I 'nY = [z]ouop TRT ump ut ‘0D '90Z <o ‘o '£0Z ‘o ‘I0T o0 ‘o ‘86T <o ‘96T ‘0 ‘0 ‘€61 'O
‘19 'p) = [z)Be[3Ta8seIT1jo0S Jut <7261 ‘0 ‘0 ‘ger ‘0 "0 'SBT ‘g ‘¢gr 'p ‘g ‘08T ‘0 ‘8LT ‘0 'O
‘ajex"eTbue de1a a1qnop ‘SLT 'L YELT ‘0 0 'OLT 0 0 'L9T ‘p ‘S9T ‘0 ‘0 ‘Z9T ‘0 ‘09T
‘wsewdeia Qut 00 L5T g o'ggT ‘0 ‘0 ‘ZST ‘0 Y0ST'0 ‘0 LYT ‘0 ‘0 ‘pyT
f17dexn quT ‘c ‘TYT 0 ‘0 ‘6£T <0 ‘LET 0 ‘O ‘¥ET ‘0 ‘CTET ‘0 ‘0 ‘62T ‘0
‘pTaleaTzernbue”dex] aur LTT 0 0 ‘¥TT 'O ‘0 'IZT 0 ‘eTIT 'O ‘o ‘9TT ‘e vIT 0 ‘0
‘oTalea"zeTnbueTdesd Ut ‘TIT ‘0 ‘60T ‘0 ‘C 90T ‘D ‘0 ‘€0T ‘0 ‘TI0T ‘0 ‘0 ‘86 ‘0 ‘96
‘gTenea"zeTnbue dexy auT ‘00 ‘€6 "0 T ‘0 ‘0 ‘B8 ‘0 ‘98 ‘0 ‘0 ‘g€” ‘0 ‘0 ‘0f
‘eTalex"aeTnbue deil qut ‘0 ‘8L "0 'C 'SL "0 ‘€L °0 ‘0 ‘0L ‘0 ‘89 ‘0 ‘0 ‘S9 ‘0
‘0 = grasTakbTwIp qut ‘€9 0 0 ‘09 ‘0 ‘0 CLS ‘0 'SS ‘D ‘D 'Zs ‘o ‘0S5 o n
0 = BIISTIABTWIL Ut ‘LY ‘0 °SY ‘0 ‘0 ‘Zy 0 0 ‘6€E ‘0 ‘LE ‘0 ‘0 ‘e ‘0 'zs
‘00 ‘6T 0 LT 'O "0 ‘vz ‘0 ‘ZT ‘0 ‘0 ‘6T ‘0 ‘D ‘9T
/xx Sosodand BUTELENEED 102 PIPD ATTIAPSTA 23T ../ ‘0vT 0 ‘0 ‘TT M0 ‘6 ‘0 0 e 0 Yy o Yo YT o
} = TwzoTlAezaeTaTtoAoTnar 1T
“{ggoT "0 "0 "0TOT Y0 ‘0 YLICT U0 CSTOT 0 e 'ZIOT o TOTOT 'O 7D
‘LO0T Y0 YS00T 0 ‘0 ‘Z0OT ‘0 'O '666 0 ‘L66 'O ‘0 '¥E6 0 'Z66 /«s ‘uwe3sAs BU3 3O 1581 Bul 03 102dsE1 YITM BPTTS 02 UTHRQ TTIM @3epdn sx/
‘C'0 '686 ‘0 'L8B6 ‘0 ‘o ‘Y86 <0 ‘786 'O ‘0 <6L6 ‘0 ‘0 ‘946 /xs IeTNB3X Aue 3TNSa1 e Sy - Aduenbaiy MOOTO BUI ‘Q9LZE OIUT SBPTATD +x/
‘0 'BL6 ‘0 ‘o ‘Trg ‘o (696 '0 D 7996 ‘e 'wgg g ‘p 'T96 ‘g /x» IPUI I2QWNU TPIH2IUT UE 10U ST I8yl zZH Q% 1° asneocag paidope sem . .|
"6G6 ‘0 0 9%k ‘0 ‘0 'EGE "0 YTGE 'O ‘0 'BYE ‘0 '9%6 ‘0 <0 /xa PWBUDS STUL ¥x/
‘eve ‘0 ‘Tye ‘0 ‘0 ‘egs ‘0 ‘D 'SEE 'C o ‘¢eg ‘o ‘o ‘0£6 g 'BT6 /xy '®IBD 10U SDOD AUO IPUI SUPAW USUI UDTUM UOTILNITS aya aou Arqgegoxd . ./
‘n ‘0 'GZ6 ‘0 'ETE ‘N ‘0 ‘026 ‘0 'RT6 <c ‘0 'SI6 ‘p ‘p ‘zig /xx ST UDTUM DOZTUOIUDUAS 2IP WIS @Ul pup walsAs ubrT3y ayly eyl paunsse ../
‘0O0TE ‘D ‘0 ‘L0600 'SD6 Q0 0 ‘zoe ‘0 006 o o 'reg o /sy ®SINOD JO 1PYL 1T SISSOOOP WeISAS WYETTI 2yl ueym B[geTIEPAR 23Q TTIM Paep ../
‘568 ‘0 ‘D ‘zeg ‘0 ‘n 682 ‘p ‘g9 ‘n ‘n 'wer ‘0 288 ‘o ‘o /xs DY IBUUPW STYI UI CBTARTIBAP 2Q 01 SDeaU vIPp 8YJ 2I8UM STDAD ayl ../
‘6LQ 0 'LLR ‘0 ‘D ‘wip ‘0 ‘0 ‘TLE g ‘698 ‘0 <o ‘g9gg ‘n 'wmag /xs @I018Q BTOAD 2Y3 UO pP23INdeX@ ST NIT 2yl 3Pyl 05 dn 185 ST AexIe STUL v+ /
‘0 ‘o ‘Top 'n ‘gge 'n ‘0 ‘ege ‘o 'PSE ‘o o ‘TSR ‘0 ‘D <9577 /xs “oT. ® BullzOSUT AQ 1P2YD ‘DISN 2Q 03 SpILdU 018z 1T sx/
‘C ‘gve ‘D D ‘gye ‘0 ‘TIve <0 ‘0 ‘8¢9 ‘0 '9gg 0 ‘0 ‘ggg ‘o /% T30TS 2Yl SN 2Qg 03 10U PIILDIPUT TTIM 1PUI SSNEISBT 0IFZ 0TS I0I OIAZ BSN wxa/
‘re@ ‘0 ‘Q ‘gze ‘0 ‘p 'ST® o ‘€2 pn g ‘OZE ‘0 ‘8TE ‘0 ‘O /+x 30U OP 1@ION IDQWNU 0TS PIITSIP 2UI DRILO0T ATISES 01 2Tqe 2q 17TTM . ./
‘ST8 ‘D €18 ‘D ‘0 ‘oTe ‘O ‘0 'L08 ‘0 'S0R o ‘0 ‘ZoB ‘0 ‘008 /+s I2DP2I 2yl 23RY1 OS ‘,T, 3Sn(03 pesoddo se ‘pasn Sem laqunu a312AD sw auy ../
‘00’0 'L6L "0 'S6L ‘0 O <Z6L 0 ‘06L°C O “LBL 0 ‘o ‘PO L /xx T0IBZ 30U ST SNTPA BYI T DIINOEXB 2Q [TIM WIS NY¥I 2yaz ‘Aexze stul ur ..
‘0 'Z8L ‘0 Y0 ALL ‘0 TLLL <O ‘0 '¥LL O “ZLL “C “C ‘69L “0
“LeL "0 0 "®9L ‘0 ‘0 “TOL C ‘ASL o o 9GL O '¥SL 0 <0 /ex A®IIP UOTINDEXD 2TD4AD nat ../
'TSL ‘0 6L 0 ‘0 ‘9bL 0 <0 ‘€L ‘0 'TB L <0 <0 ‘BE L ‘0 ‘9€ L
‘0’0 'EEL ‘0 ‘TEL ‘D ‘o0 '8ZL <0 ‘9ZL <0 O ‘€TL ‘0 ‘0 <ozZL 0 = TPUURUD T NIT ut
‘0 ‘BTL ‘0 'O ‘STL ‘0 ‘EIL 0 ‘0 <OIL <0 '80L ‘0 ‘0'go L ‘g ‘p = @T0AdTzUTBZAT NITL aut
‘€0L "0 0 ‘O0L ‘0 ‘0 “L69 ‘O “s69 O O 269 ‘0 ‘069 ‘O ‘O oo 070} = [zlBeaswraTnaz Je0T1
‘L89 ‘0 ‘SB9 ‘0 ‘C ‘ZBY ‘o ‘0 “6L9 0O ‘L9 ‘0O 0 ‘¥LY ‘0 ’'TLY F{P0X0 ‘80%0 'OIX0 ‘0ZX0) = [yl¥sSew 1eS 0145 aut
‘0 ‘0 ‘699 ‘0 'L9% ‘0 o 799 ‘0 <Z99 ‘o ‘O ‘6S9 0O <0 “9S9 0o o) = fzlaswrtaTnat aut
‘0 ‘%S9 ‘0 ‘0 ‘'TS9 ‘Q ‘6%9 <0 ‘0 ‘9BS 0 'Y¥Y9 <o <o ‘TS 0 /xxTRPUIOU=Y
‘6£9 ‘0 ‘D ‘9£9 'O ‘0 '££9 <0 ‘1£9 <0 ‘0 '8T9 <0 ‘922 <0 “o ‘18581 2aPMIIOS =¢
‘€29 ‘0 ‘129 0 ‘0 ‘819 ‘o <o °GT9 ‘0 ‘'£Te ‘0 0 “0T9 vp ‘809 ‘pROTUMOD =7
‘0 ‘0 ‘G609 ‘0 ‘€09 ‘0 ‘o ‘009 ‘o0 *86s ‘o0 O “S6S ‘0O ‘0 <z6S ‘uo pauiny xamod=1
‘0 ‘065 ‘0 ‘0 ‘LBS ‘0 ‘GBS ‘o ‘0 'ZBS ‘o ‘085 ‘O ‘0O ‘LLs ‘O ‘330 xemod=0Q s/ {0 "0} = fzlepow nat Jut
‘SLS ‘0 ‘0 ‘ZLS ‘0 ‘0 769S ‘O ‘L9% <0 <0 ‘%95 ‘0 ‘TS0 ‘o 10’0} = [glamd natTaserl ut
655 ‘0 ‘LSS ‘0 ‘0 ‘PSS <0 <0 <?ss ‘o ‘6¥S ‘0 ‘0 ‘9%G g '¥¥S
‘00 ‘TIPS ‘0 ‘685 ‘D o '9ES ‘o ‘%E5 o ‘0 ‘TE S ‘0 ‘0 ‘8ZS /+x PIPD TSPOW NIT TRUIDIUT ./
‘0 ‘925 ‘0 ‘0 ‘t£28 ‘0 “1ZS <0 ‘0 'BIS ‘O ‘9IS ‘o ‘o0 ‘£IS ‘o
‘TIS ‘0 ‘0 ‘B0S ‘0 ‘0 ‘sOs ‘0 ‘€06 ‘o ‘o ‘00G ‘O ‘86% ‘O 'O
‘G6y ‘0 'tey ‘0 ‘0 ‘06y ‘OO ‘Ley ‘O ‘s8F ‘o ‘o0 ‘Z8Y ‘O ‘08Y tlg
‘0 ‘0 ‘LLy "0 'sLy ‘0 ‘O ‘zZey <0 0Ly <0 ‘O ‘LY ‘OO '%9Y 0-2088LIPS99YZLIE 6~ <“90-3 LLESTEYOPSI08Z T '90-3 ZS0OLLYI6TGED LBE T-'LD-38 7990%LISETTEY -
‘0 'Z9% ‘0 ‘0 '6S% ‘0 ‘LSY <o ‘o ‘VSP ‘o ‘TSP ‘o0 ‘0 ‘6%% ‘O ‘90-33G0T8YRY

N "'"éc':ii:'gi
- IEI0/L6

- 97/01/31
16:12:08

asm_1ru.c

iru_rtiou_write(id, out, afc)
{ int id; /**coorsponds to iru device, irua=0 and irub=1 **/
int out; /** 16=time and status, 8=chan A, 4=chan B, 2=chan C
"%
* IRU will reset as a resulit of RTIOU reset or input power fall .ng l=chan D, 31l=all **/
* below minimum ievels {except transients). Following a reset int a.c; *- Oxffffffff=check afc read counter,
* code and data must be downlioaded to the IRU and gyro angie 0x00000000=ignore afc interaction **/
* counters are cieared.
2y
if (iru_device_id == 0) [
1f ((1d == 0) && (assem_irua_write_ok == 1) tafc == 0))) {
GYroA_angie_ Al = O
gyroA_angle_Al - o *
gyroA_angle_A2 ~ o” * Ok to write to assembly unit, 1f the flight computer
gyroA_angle_BO < § * grarts a transaction while in this block, we should be
gyroA_angle_Bl = * able to finish before the assembly unit actually responds
gyroA_angle_B2 _ 4. * to the read but we wiil protect ourselves by marking the
gyroA_angle CO0 = ;. * data invalid during the write process
gyrohA_angle_Cl - ¢. */
gyroA_angle_C2 _ 0.
gyroA_angle_D0 ~ . /* poke8lassem_irua + (0xi0 << I + 1, 1ru_datainvalid); */
gyroA_angle_Di = J.
gyroA_angie_pD2 = J.
i 1t (;out & 0x0013) '= G ¢
poke8(assem_irua + {(0x11l ¢ 1' + 1. iru_gyrosat
if (iru_gev .ce_.d == 1 poke8{assem_irua + {(0xle 1, + 1. iru_timetagi{id])-
poke8{assenm_irua + (Ox1f <1+ 1. iru_timetagliid;)
gyroB_angle_AD = § poke8{assem_irua + {(0x20 AM w” + 1. pbilt_stat [id]
GYroB_angle_Al = ¢ poxe8{assem_irua + {(0x21 MA m, + 1. bit_crnt id;
gyroB_angie_A2 = poxe8{assem_irua + (0x2a < T 1. bit_cpu..1d;
gyroB_angle_BO = ¢ poked(assem _irua + {0x2b (o i, + 1. bit_cpulii
gyroB_angle_Bl = § poked{assem_irua + (Ux2C < . + 1. bit_psmi(i
gyroB_anglie_B2 = § pokef8 (assem_irua + (0x2d4 << + o+ 1. bit_psmd{id]
gyroB_angie_CO0 _ ¢ poked(assem_irua + {(Ux2e << 1, + 1. pit_dnld(id]
gyroB_angie_Ci1 = 0 -
gyroB_angie_C2 = it oot & 0x0G08) = &)
gyroB_angie_DO0 = ¢ poxed(assem_irua + {0xi2 <q 1" + «, GYroA_angie_A2);
gyroB_angie_Di =0 poxe8(assem_irua + {0x13 << 1 + 1, gyroA_angie_Al};
gyroB_angie_D2 = 0 poke8(assem_irua + (0x14 << 1’ + i, gyroA_angle A0);
poxed(assem_irua + (0x22 << i+ + 1, bitgyrai(id
poxed (assem_1irua + Moxmw << 1, + 1, bitgyrali{id));
b
1f (out & 3Jx0Q04) '= 0}
3 poke8(assem_irua + (0x15 << 1) + 1, gyroA_angle_B2)
iru_datavalid iru_device_1d] = 0x380; poke8(assem_irua + (0xi6 << + 1, gyroA_angle_Bl)
iru_gyrosatr {iru_device_id; = Ox00; poke8{assem_irua + {(0x17 << + 1, gyroA_angle_BG)
iru_timetagl[iru_device_id, = 0x00; poke8{assem_irua + (0x24 << + 1, bitgyrbi{id;)
1ru_timetagl {iru_device_idj = 0x00; pokeB{assem_irua + (0x25 << + 1, bitgyrbldiid]);
iru_timetag(iru_device_id] = 0; /* zero out time ctr * Vi
Eangle(iru_device_id] (0] = 0. 1f ({out & 0x0002) !'= 0)
Eangleiru_device_id]{i] = 0. poked (assem_irua + (0x18 << 1) + 1, gyroA_angle_C2j
Eangle[iru_device_id] (2] = 0. poke8 (assem_irua + {0x19 << 1) + 1, gyroA_angle_Ci)
Eangle[iru_device_id] (3] = C. poxed(assem_irua + (0xla << 1) + 1, gyroA_angie_C0)
DEanglie{iru_device_:id) {0 = C; poxed{assem_irua + (0x26 << 1} + 1, bitgyrciiid
DEangle(iru_device_id) [i] = 0; poke8(assem_irua + (0x27 << 1} + 1, bitgyrcO[id
DEangie(iru_device_id] (2] = 0; 7
DEangle[iru_device_idj (3] = 0; 1f {out & OxCOC1) ‘= O |
iru_gyrosatr_delay(iru_device_1d]}'0) = g. pokeb (assem_irua + (0x1lb << 1) + 1, gyroA_angle D2Z)
iru_gyrosatr_delay{iru_device_,d;'i. = 0. poke8 assem_irua + (Oxlc << 1) + 1, gyroA_angle_DI)
iru_gyrosatr_delay{iru_device_1ld;‘'2; = 0. Uo%mm_mmmmalwwcw + (0x1d << 1) + 1, gyroA_angle_DU)
iru_gyrosatr_delay(iru_device_id; (3] = ¢ Uowmm_mmmmalwacm + {(0x28 << 1) + 1, pitgyrdl(id
poke8, assem_irua + (0x29 << 1) + 1, bitgyrdl(id

/. ®ies 3 uocp ST elEp . (89%0 (T + TOGBX0) @ -eq)ex>d Awump
((1.PTfeaezep It ‘7 + (I >> QIXQ) + qniat wasse)goayod
! Awump JUT /x S3TQ pTTeA pa3ndwod 03 HUTIPICOOSE BIED YIBW ,/

PTIOPIABITY ‘T + (T >> 6ZX0) + qnat wasse)gaxod
19Seq., Ieyo PT]IpaAB3Iq ‘T + (1 >> 8ZX0) + gqnat wesse)gajyod
(9seq)paieocq 39sal (oG 91bue goIAb ‘1 + (1 »>> PIX0) + gqnat wasse)gaxod
GUT (1@ 81bue™goxAD ‘T + (I »> 21X(Q) + qnat wasse)gayod
(ga~e1bue™goIAb ‘1 + (1 >> QIXQ) + gnat wasse)gaxod
B } (0 =i (1000%0 ® 3n0 } 3%
{
PTI0oIADSTIG ‘T + (T >> LZX0) + qnat wasse)gedxqod
snields” amd) uanisx PT]TO3AB3Tq ‘1T + (T >> 9ZX0) + gnat wesse)gsarod
(gD eTburTgoakb ‘T + (T »>> BIXQ) + qnat ussse)gsaxod
({1 + OCU8%X0 25eq) gxead snj3ess amd {15 07burTgozAD ‘1 + {1 >> GIX5) + GRAT wasse)godod
s (zDTeTpur goIAD ‘T + (T >> §IX(Q) + gnAT wasse)gaxod
‘sngess amd 3ut 3y (0 =i (2000X0 % 3In0)) 3T
t
3 S{PTIoGaABITg ‘T + (T >> GZX0) + gnaTwasse)gaxod
SUIPTITHAABITG ‘T o+ {1 »> PZX0) + qUAT wasse)gayod
aseq, 1eyo f(og etbue T goxAb ‘T + (T >> LIXQ) + qnatTwasse)geyod
(oseq)1emod ruat pesa f{1g eTbueTgoakd ‘T + (1 >> ¢IXQ) + qnaiuwasse)gaxod
3UT f{zg e1bueTdOIAD ‘T + (T >> GIXQ]) + QAT wasse)gsaxod
3 {0 =i (p000X0 3 3Ino ER
o
Y {DVLEWIL) uanisaxz COIPTIORIABITA T o+ ([>> €£ZX() + QAT wasse)gsxyod
‘3sThetswuwti naT / (1, De3sWti AT = OVLIWIL PIITRIADSITq ‘T + AH >> NNXm_ + qunit wesse)gaxod
/xn (oY~ 97thue goakb ‘1 + (; >> vIxY, + qnit wssse)gaxod
'g8G T « (0°000T / (TiDEIBWIITNIAT) = OVIARIL (Tv"@1Bue g0akb ‘1 + (1 >> £Ix0: + gnit wasse)gased
s/ . (gYTeTbueTgoxAb ‘1 + (T >> zixg|l + gnaiTwssse)geyod
o 7 (0 =1 (8000X0 3 ™ 3y
{IBACTTOITLELIBWIL NIT =- [TjbejawIi nat
'y IS35PW J0U S0P .=<. SA .<, 0S5 @1eds 03 SITIQ SARY aM / CIPTIPTUR 3T ‘T o+ (T >> 8zX:) + gnIT wasse)gexod
j {2dAcTTOITHEI8WTITNAT < [TjDBBI3UTI NAT) 3T “lpTiowsd 3Tq ‘T o+ {1 >> pgxU) + gqnit wesse)gayod
fgwT3TeToAko T naT + (T)beiawIiTnaT = [ijbeiswIiiTnat Clptitwsd 3Tq ‘T o+ (T >> ome, + gnat wssse)gaxod
([prijondo™3tq ‘7T + (1 >> meo, + gnat wasse)gayod
/ex “lpTiindoTiIg ‘T 4+ (T >> meo, + gqnatwssse)gaxod
0OVIGAIL PUR TOVITNIL SWT3 LHI 93@{NOTRD 4 vaﬂuucnoluﬂn T+ (T >>» 17Xg' * quat wasse)gexoed
ax/ S{PTIsessTITg ‘T o+ (T >> 0Z%0 * gqnat wesse)geod
uﬁhvﬂ,ommumeﬂulﬂuﬂ ‘T o+ (T »> FIX0' + gnat wasse)goxod
!SYLENIL UT 3I0YS paudtsun .Ahuﬁ ThejowtiTnaT ‘T o+ (T >> mﬂxo” + qniat uwasse)godyod
S([T.a3es0xRBTRIT ‘T + (T >> TIX0., * gnaT wasse vuwxoo
3 (0 =i (0T00%0 % 3nO) 3%
‘T 3ut /+ f(PTTEAUTEIERTAXT ‘T + (T >> 0IX0) + GnIAT udsse)gsyod ,/
(tyswt3i a3epdn
3uUt A
sssooxd 83TaMm 8Y3 DUTANP PIIBAUT BLIED -
{ oy3 butiyzew Ag ss8afasano 309930xd T{IM 8m INg pedx ayy o3 *
spuodsax AT7enioe jtun ATquSSse 9yl 21039¢G UsSTury 03 ajgqe .
L TIXOpuUTTESTOU T NIT ARIIRTSSTOUT NIT) UANISI aq PINOYS 9M ‘X007q STYI UT 9TTYM UOTIOBSUBIJ B SIIBSS
FICOX0 5 [T]X9PUT 9STOU NAT++ = [T]XIPUT 8STOU NIT I93ndwod 3EHBTTI 8y3 3T ‘3ITun A{qWasse 03 83TaM 03 MO e
i x
‘T 3ut ({((0 == 23®) || {1 == YO7o3Tam gqnit wssse)) 33 T == p1} 3T
(T)astou nar
21qnop H{
‘ {7 = SUOpTe3ITAM Wasse” (PT]paed 1
+ SDPIOM SN3B3S 3SN{ 30U US3JITIM B3RP 93BIIPUTL ./
' b {0 =i (3000%0 % 3n0) 3%
!7 = 9UOpP 23TiIM Wesse” (pTipied
. spaom sn3e3s 3sn(30U USILTAM BIRD S3BDTPUTL 4/ ([plpTTeARIRR TIT ‘T + (I >> QIX() + eNIT wasse)gaod
3 {0 =i (3000%X0 % 3n0j) 3 /x S3TQ pTiea poynduos 03 BUTPIOOOR BIEDR HIBW 4/

oTur e A 3

- 970131

) else ¢
cardboard] consecut ive_recycles++;

-

card [board! assem_insync . 1 ;
cardboard] assem_write_done = 0 ; /* allow another write
* at proper timee |
card ‘board] assem_:in t_active++ ;

card [board] last_pwr cardboard; pw;

if (card[board] assem_RTIOU_c t < card !board) RTIQU_recyc le_value) {
L
either in terrupts are off, or assem card not read, reset-

assem.i rub>oss ibLeSarity..ct++

if 4 (last_ira pwr 717 & Ox08) '= 0) && ((1Tu_DWr (1] & Ox08)
/* AFC has conpleted an assembly card transaction */
assem_i rub_R TIOU_ct = iru_RTIOU rese:- ! imit;
assem_irub_insync = 1 ;
assem_i rub_int_active++;

o)) {

I'= ira_pwr(0);
! iru_pwrfl];

S i .
- 16:12:08 asm_iru.c
* counter and disable interrupt
retura (0) ; “l
cardboard! assem_R TIOU_ct = caré (board! R TIOU_re se t©_lim ji¢;
card [board) assem_sync l0Ss _ct++;
Yi card fboard) assem_write_done = O /* allow another wite
.at proper time */
int /* card! board) .assem_insync = QO */
ch eck_statu s_register (board) /* poke8 (*card [board! .base_addr + Ox8004 + 1, Oxee) ; ‘/
int boar d; };
if ((cardboard) assem_ RTIOU_ct > card [board] .RTIOU_interrup ¢ _enable_value)
card [beoard] .pwr = read_ iru_power (*card [board! .base_addr) ;
(card [board] .assem_RTIOU_ct < card [board] -ETIOU_lockout_valye):
cardboard] assem_RTIOU_c t--; (card [board) .assem_write_done '= O '
(card [board] assem_insync == 0)) {
i€ (((card [board!.last_pwr & 0x04) == Ox0C) && ((cardboard] .pwr & 0x041 '= 0x00 cardboard] .assem_write_ok = 0; /* inhibit writes */
)) ¢) else {
/* device djust turned on send reset */ cardboard! .assem_write_ok = 1; /* enable wites ‘/
reset_board(*card 'board] .base_addr} ; Y
return Q
if ((card rboard! .pwr & 0x04! == 0x00) {)y:
card 'board! assem_insync = O ;
cardboard; assem_RTI ou_ct = cardboard! R TIOU_res et_lim it;
card 'board] consecutive_re cycles = 0; int
check_ iru_status_reg ister !)
ify ((card'board] last_pwr & 0x08) . . 0) && ((car d[board! .pwr & 0x0R) '= 0)) ! iru_pwr ! C.=read_ iru_power (assem_irua) ;
/ * AFC has started an assembly card transaction +*/ iru_pwr ! 11 = read_ iru_power (assem_irub) ;
carC 'hoard! assem RTIOU 1 ne o* = cardboard! assem RTIOU C «;
i¢ (cardboard) .assem_write_ok .= 1) 1€ (((last frupwri0! g 0Ox08) == 0) && ((iru_pwr '0) & 0Ox 08) '= 0)) !
/ * AFC transactio n cccurred when writes not inhibhited * / /* AFC has started an assembly card transaction */
card 'hoard! .assem_poss ible_parity_ct+ + assem_irua_R TIOU_i n pv = asserm_irua RT 1or_c¢
checkpoint 2_card !board! = card ‘board!; if (assem_irua_wr ite_ok == 1) {
v /' AFC tran saction occurred when wr ites not inhibited */
Y assem_irua_possi ble_parity_ct ++;
1.
i€ (((card [board! ras t_pwr & 0x08) '= 0) s& ((card[board]. pwr & 0Ox 08) == 0)) { Y
/* AFC has completed an assembly card transaction =~/
checkpoint_ card fboard! = cardboard! ; if (((last_iru_pwr (0] & Ox08) 1= Q) && ((iru_pwr!0! & Ox0R) == 0)) /
if ((cardboard! .assem RTIOU c* < card 'board! R TIOU_l ockouz_value)'’ /' AFC has completed an assembly card Transaction */
{card’board) consecu% ive_recycles > cardboard! consecut ive_recycles assem_i rua_RTIQU_ct =iru_RTIOU res et _limit;
_limit)) < assem_i rua_insync . 1 ;
f! assem_i rua_int_active++ ;
, 1f we have recycled, ie assem_RTIOU_ct is near y;
‘ R TIOU_ rese t_limit net C, do not reset - assume we
‘ are in sync but count consecutive msses after i€ (((las«_iru pwr!l! & 0x08) == 0} && ({iru _pwri1) & 0x08) '= 0)) !
‘ limit resync to signal /* AFC has started an assenbly card Transaction. */
*/ assem_i rub_ RTIOU_int_p: = assem_i rub_ BT I0U ct;
card[hoard] .assem RTIO "lct = card [hoard] -R TI OU reset_limit; if (assem_i rub_wri te_ok == 1} ¢
cardboard! consecu “ive_recycles = O /* AFC transaction occurred when writes not inhibited ‘ /[

97/01/31
16:12:08

if (assem_i rua RTIOU_c t-- < iru_RTI OU_recycle_value) (

/*
.eirher interrupts are off, or
“ counter and di sable interrupt
“1

assem_i rua_RTIOV ct = iru_R TIOU_reset_l imit;

assem_i rua_syncl oss_ct++;

/' assem_irua_insync = 0; */

assem card not read, reset

asm_1ru.c

int

V.

};
return 0;

iru_sum_angle (id, 1)

int id;
int i:
doubl e ancle_ rate;
unsi gned short int time;
if (L ==0v ! /** tinme and sat. bits are synced to start of upda
cycle **/
iru_gyrosatr [id] = 0x00; I *" clear saturation bits **/
time = update_ time (id) ;
iru_timetag 07id) = time & Ox00 ££:
iru_timetagl [id! = time >> 8;
angle_rate = angular _rate id'[i];
sax
** i€ angular rate exceeds 15 deg/sec set coorsponding
.+ gyro saturation bi%
if(fabslangle_rate)> (scaled_iru_gyro_ sat_limit)) |
if (id 0) !
Jim_gyr_stra ++;
D else ¢
Jim_gyr_strh+ t]
iru_gyrosatr’id) = iru_gyrosatr id]' gyro_ sat_mask[i! ;
DEanglefid] fi} = 0. 0; /** set integrated angle to 0 **/
iru_gyrosatr_de lay 'idl 7i'. iru_gyrosatr_de lay_ %ime;
trap_ angular_rate_a = angular_rate [id! [0 :
trap_angu lar_ra te_b = angular_rate [id) (11,
trap _angula r_rate_c = an gular_ra te ! id! 120
trap _angula r_rate_d = angular_ra te 7id) (3 ;
trap_: i
trap_mask = iru_gyrosa trlid];
trap_ angle_ra te = angle_ rate;
} else (
if ((--iru_gyrosatr_ delay [id] ‘i
iru_ayrosatr_de lay 'id)
/** apply cycle delta time and scale factor **/
DEanale[id] [i] += (angle_rate.iru_cycle_t ime gf) ;
i¢ (DEangle! jd! i) >= iru_rollover) !
DEangle® id! il -= iru_rol lover;
} else ¢
1f (DEanaglefid) [i] <= -iru_roll over) ’
DEangle!id) 71! += iru_r oll pver:
Voelse ¢ /*+ Keepgar flag condition until timer expires *+/

/* pokef (assem_irua + Ox8006 + 1, Oxee) ; '/
};
iEY t-- < iru R TIOU_r ecycle_value) !
either interrupts are off, or assem card not read, reset
.counter and disable interrupt
*/
assem_irub RPIQU_ct = iru R TIOU rese £ 1 imit;
assem_i rub_syncloss_ct ++;
| .assem_irub_insync = 0; */
/* poke8(assem_irub + 0xR005 + 1, Oxee) ; '/
}:
< ((asser_irua RTI QU_ interrupt_ enable_value !’
(assem_i rua_| ockout_value)
(assem_irua_insync) !
assem_irua_wr ite_ok = 0; /" inhibit writes ‘/
}elge !
assem_irua_wri te_ok . 1 ; /* enable writes */
Y
140 (assem_: rub_ R TIOU_ct > iru_RTIOU_ inter rupt_enab le_value)
(assem_: rub_P TIOU_c © < iru RTI CU_lock out_value) [
(assem_irub_insync == C') /
assem_l rub_write_ox . C ; /* inhibit writes */
I else {
=21, /* enable wites ‘/
}:
return O ;
} .
int
iru_in tegrat or ()
{
int i, 3
for (i = QO i <6; i++)¢{
check_ status _register | i) ;
b
ire_1024_h z_cyc le++
iru_1024_hz_cycle . iru_1024_hz_cycle & 0x 000003£f;
if (iru_cycle_array ‘iru_1024_hz_cy cle) ' = 0){
iru_channel = {(iru_channel + 1) & 0x00000003;
iru_sim (iru_chamnel) ;
} else {
if (iru_channe 1 == 3) (/** safe to pick yp dynanics rates **/
for (i = 0;1 < 2; i++) !
if {dyn_rate_avail =0y (
for (3 = o J<4; 3++) (
angul ar_ra te il [i] = dyn_iru_ratelil (3],
Y
dyn_ra*te_avail [i] = Q
}i

iru_cyr osatr!
DEangle(id?

Q! . ivu_gyrosatr [id!
= 0.0; /** set

(iru_noise_on '= O && ((iru_gyrosatr (id] & gyro_

sat_maskfil) ==0)
Eangle rid) i1 = (DEangle (id1 [i! +

iru_n oise (id)) /iru_angle_s

"gyro_ saz_mask [i1,
integrated angle to O **/

)

ot

e

90U
16:12:0:8 -

Fangle(id] "i] = DEangle’

iru_datavalid(id! = 0x20bc ~

if(id == 0) ¢

switch (i) ¢

case O
gyroA_angle_AD =
gyroA_angle_Al =
gyroA_angle_A2
br eak;

case 1:
gyroA_angle_B0 =
gyroA_angle_Bl
gyroA_angle_ B2
br eak:

case 2:
gyroA_angle_CC =
gyroA_angl e_(C1 =
qyroA_angle_C2 =
break. ;

case 3:
gyroA_angle_D0 =
gYYoA_an _D1 =
gyroA_angle_D2 =
break;

switch (i) ¢

case Q:
gyroB_angle AD =
gyroB_angle_Al =
gyroB_angle_A2 =
break;

case 1:
gyroB_angle_B0 =
gyroB_an _Bl =
gyroB_angle_B2 =
break;

case 2:

case 3
gyroB_angle_D0O =
gyroB_angle_D1 =
gyroB_angle_D2 =
break;

iru_gyrosatrlig};

asm_Iru.c
id' i’/ iru_angle_s¢;

/** hit 7 always = 1

int

iru_sim (target_channel)

*/

Banglelid) [0] & Ox0C0000ff; !
(Eangle’id) (01 >> 8) & Ox000000ff;
(Eangleid! 101 >> 16) & Ox Q00000€F;
Eangle[id) 1] & Ox000000ff;
(Eangle [id) [1] >> 8) & Ox000000%¢;
(Eang le [1d] [1) >> 14) & 0x000000ff;

£;
(Eang le [1d][2] >> 8) & 0x 000000££;
(Eangle 7id! [27 >> 16) & Ox000000£;
Eangle(id) 13} & 0Ox000000f%;
{Eangle(id] "2 >> 8) & Ox000Q00Q0f€:
(Eangleid! 12} >> 16) & Ox0Q00000£F;
Eanglef(id! 10! & CxQ00000£F;
(Eanglelidl 10! >> 2) & OxC000QQ0ff:
(Eanglefid) 10 >> 16) & Ox000000FF;
Eangle[idl 1) & Ox0000fEf;
(Eangle[id) (1] >> R) & Ox0QCQQ00fE;
{Eanglelid! f1] >> 16) & Ox0C00D0€E;
Banglelid] 12! & OxD00000fF;
{Eanglelid! 12! >> 8) & Ox000C00fE,
(Eangle[id? 127 >> 16) & Ox000000€f;
Eangle [id’ 12! & Ox 000000fF;
(Eanglefidl 3) >> g) & 0x0000 COf£;
(Eangle’ id) 3! “>> 16) & 0x000000£%;

ze

int

int
int

/**int

Jr

SfrRst QY =

if

o8

iru data

£

targe t_channel; /* C=chan A

sti2]] /** Soft Reset Function code
21141

power off to on transition,

= power turned on - doing BIT 1
= wait for download to complete,
= soft rese%x,

= normal **/

i
Sfe R,
anqular_ rate [o ¥/

i ru_mode:
sec

timer,

s WO

peekBilassem_irua +

{((SftRs= 0!
(peekB{assem_irua +
(peek® (assem_irua +
{peek8(assem_irua + (0OxR3 << 1)
{peekB({ assem_irua + (0x84 << 1)
(peek f{assem_irua + (0x85 << 1)
{peek8(assem_irua + (0xB6 << 1) 1)tz Nx00)

/* di e? not pass reset packet test */

1= 0x03) "'
(Ox81 << 2) + 1)
(0x82 << 2

~— 1
1
(o3
<

£a 4 pa b
I

D O 3O

= X
o0 oo

]
o 0o
=

~

SEeR st 107 = 0,

= peek8{assem_irub + (0x80 << 1) + 1}

0x03) !
(0x81 << 1) +
(0xR2 << 1V +

(SELR g1 1=
(peekB(assem_irub +
(peekB (assem_irub -+
{peek8(asser {0x83 << 1)
(peek 8(assem_irub + (0x84 << 1y
(peek? (assem_irub + (0x85 << 1) +
(peekB (assem_irub + (0x86 << 1) + 1

/* did not pass reset packet “este |

SfeRst (1! = o

*

b

g T -

_ 1

o

o oo X
RoxKox

PO oo o

-

ub

s
S S OO O

o

x

o |
[Se]

Pes) o

(({card’i!.pwr & 0x04) /** device i
iru_reset (i};
bit_crneli) = 0
bit_dnldlil = 0
dwn_ld_done'i! =
iru_modelil = 0;
/** device is on

if

Y

switch (iru_modefi]) (
case 0:/** device i
iru_reset{i
iru_rtiou_write(i,

ust turned on **/
)

31, force write);

wxy

/

l=chan B, 2.than C, 3.than

no»

b 16:12:08 asm_iru.c

iru_timer ! it . iru_BIT_t ime; /** counts down to zero iru_rt iou_write (i, 15 force_wrice); (A
b upda*te status only **/
iru_mode [i! = 1; soft_reset_flag'il! = 1,
br eak;
i€ {dwn_1d_done (i) == 0x0£) { /** downl oad
case 1. /** 1 second BIT timer **/ conplete **/
if (iru_timer i1 > 0) { iru_mode [i] = 4;
iru_timer(il —; ? else ! /** check for download compl
} else (/** timer expired ++/ etee +1
iru_mode [i] = 2;
bit_dnldiil . 0x30; /|’ BIT completee Y;
iru_gyrosa tr [i] = 0x00; Y
bit_crnt'il = 500 / 15.625; break;
dwn_ld_done [1] = 0x05;
iru_rt iou_write (i, 16, force_write) ; | ** upda case 4:/** normal opera tion **/
te status only **/
iru_mode i) = 2 ; /** check for soft reset £irst before calculating an
b gles *+*y
break;
if (SExRst il == 0Ox03) { /** soft reset Just
case 2:/** wait for download to complete **/ occurred **/

iru_reset!i) ;
/** check for soft reset

iru_r-iou_write(i, 31, force_write) ; [
update all *+*/
1€ (3 ExRseli) == 0x03) ! /** sofr reset just occu iru_timer 11! = iru_sofs_rese t_r ime; /rx
rred **/ counts down to zero **|
iru_rese t(i}); iru-modefi? = 3;
iru_rti ouw writ e(i, 21, force.write) | ** upda } else {
te all **/ i ru_sum_angle (i, target_channel ! ;
iru_timer(i! = _ /** coun i£(rarget_channel == 3) !
ts down tozero** /** write to iru after all angles co
irunmede’'i! =3 mplete: * /
Y else ! iru_rtiou_write(i, 21, check_afc);
b
if tdwn_ld_doneli! == 0x0&) [/** download com }:
plete **/
iru_modefil . 4; break;
I else ! /' .check for download complete Y
};
iru_dewnload(i) ; 1€ (iru_mode’i! 1= 4y !
L card i!.assem_insync = C ;
}: Y
br eak;
case 3:/** soft reset delay 1 second timer e +1
Y
if (iru_timerfi} > 0) !
mer [1)--; int
1 /++ timer expired =*; iru_downleoad(id)
int id;
s
** this prevents a continous so ftreset
': by writing over the function code
LI
1€ ((id == 0) && (fake_download '= 1)) ¢
i€ (1 == 0) {
pokef (assem_irua + (0xR80 << 1) + 1, Cxff FuncCodeA . peek R (assem_irua + (0x80 << 1) + 1);
)i
Y if (FuncCodeA == 0x09) !
MspaceA = peek8 (assem_irua + (0x80 << 1) + 5) ;
if (1 ==1){ if (MspaceA == 0x00) !
poke8 (assem_irub + (0x80 << 1) + 1, Oxff /* 0x00 space GSP p-space ' /
) bit_dnld [id! = bit_dnléfid] | 0xcO;
v

Y; poke8(assem_irua + (Ox2e << 1) + 1, bit_dnldfid)!
/* chksum on p-space good * /

o131

| 16:12:08

}

in%

asm_1ru.c
dwn_l¢_dore ! id = dwr_ld_done ! id! 0x23 5
};
1E (MspaceA == 0x10) ¢
/* OXOO space d-space * /
bit_dnldlid] . bit_dnldfidl ' 0x0c;
poke8 (assem_irua + (0x2e << 1) + 1, bit_dnld [id)) ;
/* chksum on d-space good * /
@wn_ld_done { id! . dwn_ld_done [id]' 0xOc;
1.
Y.
v,
if ((id == 1) && (fake_ download = 1)} ¢
Func Code B = peek 8 (assem_irub + (0x20 << 1) . 1);
1f (Fix.ccode2 == 0x09) {
Mspace B = peek® (assem_irub . (0x80 << 1) +5) ;
if (MspaceB == 0x00) !
/* 0x00 space GSPp-space*/
bit_dnld (id! . bit_dnldridl | 2xc0;
pokef (assem_irub + (0x2e << 1)+ 1, bit_dnld [id]) ;
/ .chksum on p-space good./
dwn_ld_done ' id! = dwn_1¢&_dene | id! 0x03 ;
).
if (MspaceB == 0x10) /
/* 0x00 space d-space */
bit_dnld’idl = hix_dnldrlid! ' 0Ox0c;
poxef {assem_irub + (0x2e << 1) + 1, bit dnldrid’):
/* chksum on d-space good */
dwn_ld_donefid! = dwn_ld_doneid! | Ox0c¢;
AU
1
i£¢ fake_download == 1) {
bit_dnldfl id} = Oxfc;
iru_da tavalid’ id! . Oxbc;
dwn_1d_done fidl . 0x0f ;
)

run_assem()

{

rwa_loop () ;
return 0;

10 = g 33oucTebd 'TTYTY9YLBGO0ZSO 0 = 'O [ZjSuea3TT(nuT 8w
(4330 gqeps, ‘1357 330u0)duDI3S|) 31T ‘§9L9VTTEEGLY60 0 = (g} [T suera™{inu Tou
‘1 = q 330U0"EDY (1L6L8821V88YS66°0 = (1] T sueayT{rnuTTsu
((.uo qebs, ‘a357330u0)dwor3s|) 3T '199L06€8296V00°0 = Mouwﬂ suex3” 10U Taw
‘0 = BT330U0TEbY 95TYEECLYOELS0 0~ ~ [Z]0,SURIITTINU Tou
{.330 ®webs, ‘ijsTjjouo0)dudiisi) 3T 100000006600000°0 ~ (1) -0isuead”(Inu Tau
!'7 = eT330u0TebY ‘yE0BOTLITE9866°0 = [0] (0)SURIA TINU (ou
{{.uo eepa, 'ais wwozovﬂiuu..m_v 37T
2, /%
{1238 j30ow Ieyo SPICOD
(1387 330U0) 330uc eba j3ea090eds 03 QUTLUS WOIZ SUOTIPWICISURIZ 9YL 9ie SURIL [INU Taw
pTOA x/
{ 'y = IPATPU
‘T = g~ ~30U0 ebs .10 0 = ealepTxXew eba
LT en gouo” moa uhmw,o g = BLI9D xeuw ebs
/x WD 3INEZEOP ., ‘mum = y3busyTrInu ebs
Phg = [T)3XeTxandT ebs . saxejowexed 3SdwWeU ., .
(++T fp’> T !9 = T) 103
/s BZTTRIITUT 4/ T aut
R R }
'Y6S9EETTILSSYES O- = (g Ti{Tj3utolTm 17Ut ebs
1LLSEB68TSE09LY 0 = (Ti(Tii{Tisutolm proa
T6V9VBIYSIETELL G- = [0} (1) {Tisutoin
1660062259868%€S°0- = [Zif{ol{tjautel™m Jan
!GZYYaTBOGYEEEY 0 = (Tii(0iiTiautolTn NO 03 3{nezap pabueyp
10ZLYTTTISTLLEGL O = (010} (Ti3utelTn S30T75UC2 (8powW prOAE 03 ()€ 330U0TebHe 03 (g)e z30uUc psbueyd
Tg1Y8ST8YYOLIYZ O- = (2, (TiiTiautol™d SULTG [96 ATTY 67 UCTIEOTFTROK «x/
LES9ETGLYTS0E6T 0- = (Ti [Ty (ti3urosTd
1716259095 E6760°0- = (01 (TiTi3utol"d ‘gT330ucTebe ‘BT jjoUCTELS aut
16TE6SETLETISZYZ G- = (Z)(0iTi3utol™d {lylaxeTaanoTede 1eax p
60S0LTTELSYTET” o- = (Tii0iitisuresd /» T19POW 03 [BDOT ./
1099TEELLTTZS660°0 = (0] (0] [T]3utol™d
/v Z2-Y3d &/ . IXew I93Unos”eba TU<
fLg,lEisuRIRT{IAUT I8W ‘(¢ (f]sSuRILZT [InU Zaw
'9ETEBEGSSTEYES O = (Zi[T)igi3urol™n '{gi zliziautol™
'9yL6VBY686L08Y O~ = (Tiliil0j3urol ™™ oo gz gisutelTd ‘fesTazeTebs ‘Yibus (T I{nU ebe ‘IPATRU 'e319DT Xeuw ebd ieaa p
{E86G9BTBYYTSLL G- = (0;(Ti{ol3utol™™m /+ BIBD 3STOWRU 4/
1GTZYTYSBLLSYES 0~ = (Z]i0i(0]3uToi™m
1Z681626695LY8Y 0~ = (1l{0l{glautol™m ()2AT0SZT ' (juoTsusixsTebe ‘() soyieuwsuty ebs pToA
'0EY898YLO6LEZLL O = [0l (0] [0j3uTol™m /+ SUOTIOUNG [BD0Y ./
'ZeE9zzIEET9TYE 0- = [zl [Tl lo)3utel™d
‘00TPLETTYEVEST O = (Tl [T](0i3utol™d BejawriTqq {E8ITP UIBIXI
199p6L082900L60°0- = (03 [1)(0]3utol™d ‘Belz betp JUT uIsIXe
'p998EEYTTESTYZ 0- = 12l [0]i0l3uTol™d ' ‘ebaT 3. 3714 UIIIXd
'pLETSTLSB9TE6T 0 = (1] (0] {0]3uTof™d 19a81 DETD JUT u183Xa
1L2v09291292860°0 = {071(0)[0lauros™d feuwt3iTheTp JUT uxa3IXS
/v T-YIU «/ ! 1opowu JUT UIaIX?d
/» SOTasoubetqg x/

g = Xew Iajunod ebe
- = (03”2137 ebs L4 Topow eba, spnTouils
/+ TEOOT »/

LYV96TBI0LITEE O [z {z]lsueai~1InU zow

'GEZTIVILBTI6LIT O = .T][Z)suexd [(nu zaw <y BUTIIS> 9PRTOUTy
100P9ZLESTIBICO 0 = (0] [Zisuead [InU zow /x PIEPUBIS /
fBY6SEQOTBSLLIT O~ = ‘Z) [1]lsueas” {Inu” gou

‘60LTE0GZECOE6E 0 T, [TIsueIi [Inu zauw L4 S3iep-BTRUIT. SPNTOUTH
{GGBTTIPLYTSTS00 0- ~ '05(T]sSuRay TIRU Zaw . SOUTANOIGNS XTIZBU I03F ./
‘8GG00€EGGGLTITS0 0~ 7 ”Nuhoumcmuulﬂﬁﬂﬁlme

$60000000000000°0 = 'T] [0jsuea3” [TU Zau W4 s3iep-sadA3, epniouts
10SYTZET6LEY866°0 = (0] [¢)sueas TTnuU Zaw /v 39p9dA3 Te8I D 943 203 «/
1£Z26G566L52TV66°0 = [Z]{glsueas [InU (9w » To9pow ©Hd 13T TUTSSED ,/
1§GTZE06TEBBYE0 0~ = [T](Z]lsueai [Inu 1au /s O TOpOW EDBS 4/

D[PpOW 50 prnet
TE/TOL6.

16:12:14
)
/*
Indexing: ! (+Y REA/+«X EGA) , ((+Y REA-X EGR), (-Y ?. EA/+X EGA), (-Y P. EA/-X
EA)
Note that within the CAB docunentation, the +«Y REA is designate? as the A REA
* and the -Y REA is designated as the B REA. Additionally, the +X ERA is
+ designated as EGAPA, while the -X EGA is designated asEGAQA.
mel_u_vec: Unit vector of +Y ME thrust in 5/Cc coords me2_u_vec . it
* vector of =Y ME thrust in S/C coords
*/
voi d
ega_model (ega_ext_c om, lvd:_pos_est, mel_u_vec, me2_u_vec
d_real ega_ext_com '] , lvdt_pos_est ', mel_uvec!]l, me2_u vec!l! ;
/ﬁ
* in: ega_ext_c om commanded extensions lvdt_pos_est lvadt extensions
-
* out meluvec main engine vectors me2_u_v ecC
*/
{
d_real delta;
int i
if {ega_onoff_a) !
/* update state per command -- limit if necessary: */
for (1= 0; 1 <« 2; i+s+) (
ega_ext_comli * 2 + 0! = ega_ex*_com{i * 2 « 0! * _Q0027245;
lvdt_pos_estfi * 2 + 01 = lvdt _pos_estfi * 2 + 0! * 00027245
delta = ega_ext_com’'i * 2 + 0! - ega_curr_extli * 2 + 07;
if (delta > ega_max_delta)
ega_curr_ext[i * 2 + 0! += ega_max_delta;
else 1f (delta < -ega_max_delta)
ega_curr_ext[i * 2 + 0! -= ega_max_delta;
else
ega_curr_ext[i * 2 + 0) = ega_ext_com’i * 2 + 07
I * check lvd: data */
for (1= 0; 0 < 2; i++) (¢
i€ (fabs ! lvdt_pos_est i 2 + 0! - ega_curr_ext i * 2 + 0!
lvdt * sra_max delta)
ega_curr_ext-fi * 2 + 0! = lvédt pos est’i * 2 Ql;
J
if (ega_onoff _h) !
/* upcate state per command -- limi%t if necessary: '/
for (i =0;1 < 20i+.) {
ega_ext_com'i * 2 + 1) = ega_ext_com[i ' 2 + 11 ° _0002724%;
lvdt_pos_est(i * 2 + 1] = lvdt_pos_est{i ' 2 + 1. 00027245
delta = ega_ext_com{i* 2 + 1! - ega_curr_ext [i* 2 + 11

o0l

if (delta > ega_max_delta)
. ega_curr_ext [i ' 2 + 1] += ega_max_del *a;
if (delta < -ega_max_delta)

“2 41—

else
ega_curr_ext [i ega_max_delta;

else

ega_model.c

eca_curr_ext ! i .2 + 11 ega_ext_Comli * 2 *

/* check lvdt data */
for (i = 0; i < 2; i++) [
if (faps (lvdt_pos_est[i, 2 + 1!- ega_curr_ext.[j = 2 + 11}
> ndlvdt. ega_max_cdelta) .
ega_curr_ext[i ‘2 + 11 = lvdt _pos_est [1 * 2 + 175

A}
/* Kinematics */
ega_kinematics (mel_u_vec, me2_u_vec) ;

/* Diagnostics */

if (model == 3 && diag_time- - > O
if (diag_flag == O (
if ((f_ega = fopen(" /si m/tmp/ega_diags “, “w”)) ==(FILE.1 N

printf ("File Qpen Load Faiure for EGA diagnos tjcs\n*

3.
diag_flag = 1;

if (diag_level == 1 '! diag_level == 2 '' diag_level == 3) [
if (£_ega == (FILE *) NULL) {
printf ("OUTPUTS: mel_u_vec %12.6f %12.6f %12.6f\n
me2_u_vec %12.6f %12.6f %12.6f\n", mel_u_vec'0], mel_u_vecll], mel_u_vec!2]
me2_u_vec 0!, me2_u_vec(l), me2_u_vec!2!);
} else !
fprintf(f_ega, "OUTPUTS: mel_u_vec %12.6€ %12 K& 312
.BfA\n me2_u_vec %12.6f %12.6f %12 .6f\n", mel u_vec(?!, mel u_vec!l]!, mel u_
vec'2!, me2_u_vec 0!, me2_u_vec’l!, me2_u_vec 2!);
Yi
Y
if (diag_level . 2 ' diag_level == 3) [
if (f_ega == (FILE *) NULL) [
printf (“INPUTS: Est. Com: %12.6€ %12.6£f %12.6€ %12.6
£ \n LVDT: %12.6f %12 . AFf %12.6f %12.6f\n", ega_ext_com!Q), ega_ext_com'l}), e
ga_ext_com[2], ega_ext_com’3], lvdt_pos_est!'0), lvdt_pos_est'l!, lvdt_pos_est'2], lv
dt_pos_est!31);
} else !
fprintf(f_ega, "INPUTS: Est, Com: %12.6£ %12 6f %12,

6f %12.6f \n %12.6f %12.6€f %12 .6f %22 6Kf\n", ega_ext_com{0l], ega_ext_c

LVDT:

om(l), ega_ext_com[2), ega_ext_com(3!, lvdt_pos_est’0}!, lvdt_pos_est!l], lvd:t_pos_es
t{2Y, lvdt_pos_estl3]);
P
¥
if (diag_level == 3) !
if (f_ega == (FILEe) NULL) /
printf("\n Internals: curr ext: %12.6f %12 .6f %12 . 4¢
$12.6f\n onoff_a %2d onoff b: %3d\n", ega_curr_ext 7)), ega_curr ext!11! e
£

ega_curr_ext 3! | £_a, ega_onof £_b);
I else {
fprintf (f_ega,
onoff_a %3d onoff b:

ga_curyr_ext 2], ega_on o
“\ nInternals: curr ext:

$12.6£ 312 6f\n %3d\n" , ega_curr_ext [,

xt 1), ega_curr_ext "21 , ega_curr_ext "2, ega_onoff_a, ega_onoff _h);
(FILEe) NULL) {
print £("End of Cyc le. Dbb_timetag = $f\n\n", bb_timetaqg)
) else { .
SPEAN ¢ f(£_ega, " End of Cycle bb_timetag = %£\n\n', bb_time
tag)]

97/01/31
i16:;2:1‘4 . ega_model.c

Y for (1 = 0; 1 < 2; i++) {
if (diag_time . . 0 && model == 3) { for (3 = 0; 3 < 2; 3++) !
diag_%flag . 1; linmapfi! (3} = mtemplil(di];
if (f_ega '= (FILEe) NULL) { }
if (¢c1 ose(f_ega)'= O ! \
printf (“Error closing Engine Gimbal Debug File \n") ; 12solve(linmap, ext, angle) ;
Y
) /* newton loop ‘1
if (diag_time < 0 &% model ‘'~ 3) zgi:ﬁ;ge:c(e), =0
diag_time = 0; while (convergence == 0) {

if (counter >ega_counter_max) |

v il? ! AN
ega_kinenatics (mel_u_vec, me2_u_vec) printf ("aaaaack' eganodel : kinemarics bar f=d" |
d_rea !l mel_u_vec'', me2_u_vec! ;
1 o 00
/> convergence = 1;
* local: 3
/* calculate extension and matrix of partials */
v exte (2) “cal cul ated” nornalized extensions ega_extens ion (angle, extc, big_g, rea) ;
vext_err ((2) normalized extension error
, angle_ step(2) newton step |” evaluate extension error */
‘big_g(2 ,2) matrices of partials for (i = Q 0 <2; j+4)!
' angl e(2) gimbal angles ext_err'il! = ext(i! - extc (i}
' rate (2) cutput gimbal rates (rad/s) i
, accel (2) output gimbal accels (rad/ s/s)
* ext (2) n orma lized extensions ext_err_norm . SQrt (p ocwlex t_err [0], 2) +
* ext_dot (2 normal i zed extension rates pow(ext_err’ll, 2.)):
ext_dot_dot (2 nornmal i zed extension accels
mtemp{ 2, 3) temporary matrix /.test convergence * /
, linmap(2 ,2) and vtemp!2}) tenporary vectors if (ex%t_err_norm . ega_err_tol!!
* 1,3,k misc counters convergence = 1;
* convergence convergence £flag }
' counter counter for new-on iterations i£ (convergence |
‘oel,c2, 8, @2 trig fun ct ions /* solve for newton step */
. rdld2 trans matrix 12solve(big_g, ext_err, angle_ step) ;
* geom thrust unit vector in engine coords
, me_str remp trans formati on matrix /* rake newton step */
. for (i = 0; 1 < 2; i++) !
anglefi' = angle! ;
d_real extc’ 2!, ext_err 121, ang le_step’2!, angle ‘2!, ex: 2., ext_err_no
m,
cl, c2, sl, 52, geom 12]; counter = cocunter . 1 ;
d_real big g2 2}, mtempf2! [3], linmap!272?, £3424213)73), me_str’3) 13)
)N) /* end of newton loop */
int rea, i, i, convergence, counter; if (model == 3 && diag_time > 0 && diag_level == 3 && diag_flag == 0
y oL
/| ‘' REA loop - thrust vector for each REA™*/ if ({(f_ega = fopen!"/sim/tmp/ega_diags", "w")) == (FILZ *) N
for (rea = O rea < 2; rea++){ ULL) L
printf("File Open Failure for EGA diagnosticsin”);
| * deconpose extension data and normalize; Y
for (1 =0; 3 < 2; i++) diag_£flag = 1;
#1f£ 0 i€ (f_ega == (FILE *) NULL} [
ext!il . ega_curr_ex tlrea ' 2 + 1]/ ega_null_length; printf(°"REA: %33 Angle0: %12.6f Anglel:%12.6f\n", r
tendi € ea, angle[0], angle!ll);
= ega_curr_ext [i * 2 real /ega_null_length; } else

fprint€(f_ega, "REA: %3d Angle0: %12.6f Anglel:%12.
5f\n", rea, angle'0!, anglelll);
/* initialize guess from inverting linear map */ 3
for (i = 0; 1 < 2; i++) {
cross(mtemp (i), u_jointfreal!'il, p_jointirea!'i});

Y.

b

97131
16:12:14

/.compute ME thrust unit vector given solution for angles */

/* €irst compute the null_to_rotated transform */
sl = sin{angle’C));

¢l = cosfanglel0));

s2 = sin(angle(l]);

c2 = cosf{angle(l]l});
£d1d2{0! 0] = c2;
£d1d210? 111 = s1 * s2;
£d1d2(0! 2] = -cl * s2;
td1d2(11 101 = 0.0;
£dld211'[1]) = c1;
£dld2[111[2! = s1;
tdld2 (2] (0] = s2;
£d1d2([2! 1) = -s1 * c2;
£d1d21[2112) = ¢l * c2;
geom[Q} = 0.0;
geom’1) = 0.0

geom 2 = -1.0;

/* compute ul

vector in spacecraft coordinates */

if (rea 0) ¢
times_33matli3mattran{me_str, mel _null_ *trans, +dld2
times_33mat3vec(mel_u_vec, me_str, ceom);
! else !
times_23mat33mattran(me_str, me2 _null_trans, £dld2
times_33matldvec (me2_u_vec, me_str, geom);
/*end of rea loop ‘/
void
ega_extensioniangle, ext, bhig_ g, rea)
d_real *angle, *ex*;
d_real big_gf212;
int rea;
Ix
* In: anglef2!: engine gimbal angles (rad)
* Duk: ext[2]: normalized ega extensions big_gf2!72}: partial
* derivative matrix rea: number 0f the engine assembly under
* consideration
*/
i
/ﬂa
“ local:
‘sl sin of angle(l) cl cos

of angle(l) s2
* angle(2)

.al pha(2)
‘ derivatives h(2, 2,2)
. stempl->2
.mtempl->4 (3,3}

u_j oint gamma (3, 2}
* gammat (3,3)
* ganma dgammac (2, 3, 3)
isc counters

sin of angle(2) c2 os of

intermedi ate 9(2,2) alpha
second alpha derivatives

tenporary scal ars vtempl (3) ary vector
temporary matrices pmj (2,3) _join t -

identity minus rotation matrix
garma transpose dgamma (2 , 3,2) erivative of
dgamra transpose i, -, k

ega_model.c

p2[3113]

d_real sl, cl, s2, c2, alphaf2], stempl, stemp2, vtempl!3];
int i,
d_real gamma_local'3] (3], gammat (372}, g(2)12!, mtempl[3'!3],
'

mtemp2 721731 pm3i 21727, dgammal2?[31 1271,
sl = sin(angle(0)); /* trig functions */
cl = cos{angle{0]);

s2 = sin(angle(1l]);

c2 = cos({anglell]);

gamma_locall0) (0! = 1. - ¢2; /* form gamma and its derivatives
gamma_l ocall01[1] = -sl ‘' s2;

gamma_l ocal [0] [2) = ¢l * 52;

gamma_l ocalll]) (0] = 0.
gamma_1 ocalfl] [1) =1 cl;
gamma_l ocalfl] 2! = -sl
gamma_localf2][0) = -s2
gamma_localf2! [1) = g1 * ¢c2
gamma_local(2] (2] . 1 - £1.€2;
dgamma [0] [Q1 [0} = O.;
dgamma {0} {0} [1! = -cl * s2;
dgamma [0] (01 (2} = -s1 * s2;
dgamma (0] [2170! = 2. ;
dgammal0} [11711] = sl1;
dgamma 0! (2172) = -cl;
dgamma 0112170} = 0.
dgamma 0} 12171 = ¢l * ;
dgamma 0! 121721 = sl * c2;
dgammalll (0110 = s52;
dgamma (1] 701 11) = -sl * ¢2;
dgamma (11 012} = cl * c2;
dgamma ‘1! 1110 = O
dgamma’l) 111 = 0. ;
dgammafl] (1272 = 0. ;
dgamma 1! 27010 = -c2;
dgammafll 211 = -s1 * g2,
dgamma 1] {212 = cl * 2.

/* calculate the alpha’s */

rrancspose_22mat (gammat, gamma_local);

for (1 = 0; 1 < 2; i++) (
times_23matl3vec(vtempl, gammat, p_Jointlrea Til);
minus_2vec(pmilil, p_joint real i), u_dnint yealfil):
stempl = dot3(vtempl, pmjfil);
stemp2 = dotl3{(vtempl, vtempl);
alphali) = -stempl + 0.5 * stemp2;

/* extensions */

for (i =0;1 < 2; i++) !
ex- i) = sgrt (1. + 2. , alpha fi}}) - 1.;

/* calculate derivative matrices */

*geta */
or (I = 0; j < 2;
transpose_33mat (dgammat ' i

Ph o~
"

j¢4) !
o, dgamma ! 1),

*/

mtem

dgammat 2112 137;

9P / (1Tid . {01{01® + {019 . | = (iletbue
FE8P /{109 « (11i01® - (0.9 « (TiiTi®) = [Qjeibue
‘{.aeinbuts dew gxz :i9pow ebs ;yoeeeee,)jiutad
7 (70 == 38p) 3T
. E . 10,Ts® 1..1.® (0ii0.® = 38p
!39p TeaI P
t{ziizie 1eai p
!gTouR, ‘G Teaxi p
[z etoue ndinc ,z.9 (Z) e AndUT g = Xe ZXZ S3ATOS
./
(e1bue ‘q ‘e)anioszl
pToa
« UOTSUSLXS EDS 30 oud {
t
.
1
[(Ti3%e + I LB (TLB = TN ESTY
po(sel T s vty = 103
jo(sF1 iz > T 19 = 1) 103
/x BTBIG 198 4/
1
{
‘zdwess 4 g g + jdwess- = [{]{T]b
S((Te9x)3uTolTd ‘Tdws3a)gi0op = zdwass
o [Tileaajzutol™d ‘¢dwsiw ‘TdwejA)DSAFIBULETSIUWTS
(€ [0](0]zduazuy
"10) 101 Tdweswy ¢ (0] (0] gdwasury) JewbsTsn1d
f{Tdwssw ‘zdwsizuw) jeWEET 9sodsueis
¢+ Jeuwed [ewwedp ‘Tdusijw) I3RWEEIPWEETSIWTS
(T, cwd C1dwala) giop = Tdwass
f(rTi{esautold ‘{{]3jeuwedcp ‘Tdwe3A)DdS8ALIRUWCE SSWTS
3

} (e fz > 1 tg = [) 30

}o(++T fg > T fp = 1) 303

o [opowl” B39 j E.Nuea
- - 1enoiLe

« S9OXB 9s5uss o0xAb Huole sozei ai3indwod

‘oToumTseTIq 0IAD [eaxTseIq 014D Teax"p
{1g)93ex suas Tes1 p

't aJut

{;se-q 01Ab Iut

L.iesex BaI”]

It
(set1q o1ADb ‘83eI) [SpPOW

0 = G 330U0T0IAD

330 gnat, ‘ais”33ouo)dwdiss 3T
!71 = g 330uU0”0xAb

{ WUC gnit. ‘235 zzouc)dudiis,) 3T
g = ©330U0T0IAD

(330 enat, ‘135 jjouo)dwdiis;) 3T
!7 = ® 330U0T0xAD

LGO Benxt 23S j30u0)dudIis;) 3T

{jI3sT350u0 Teyd

138 330U0} 330U0™

T = [Zigg suss 0xkD (G =
(TiEqTsuesT0xAb (g = [0iE€QTsuss oAb !t = (Z,7G SuasT0IAb 'Y
= [1,2G7SUas™CIAD G = [{,2G Suas 0IAD '3 = [Z,79 suss 01ko
fr9 = [T, suesToxAD 7 = (0,19 suss 0xAd DBUTISIL 103

00 0o0Ooa0

I'0 = (Z,9q suss oxAkb
1620998 0 < [1.%9 sues oAb
!5°0- = (01vq sussToxkb

LOTLOLTO = (Z1Eeq sussToxAb

!9ZIPOL 0- = .1]€g suss 0IAD
{€8LEYS0°0- = (0]€9TSussToIAb
L0 LGL 0~ = (2179 sussTo1Ab
1pZePOL 0O~ F [1)Z9 sussT01Ab
€8L6V90°0- = | 01zq sussToxkb
‘0 = (g)iq suas 0xkH
LIGLTE0 0~ = (1119 suas 0akb

128666 0 = (0119 sussToakb

{7 = [z,geTsuasToakb) =
(TigeTsussToIAB °g = [QigETSU3sTOIAD ‘g = [g]zeTsussToakb 1 .
= [7igeTsussToxkb {°Q = [0 ze suas 0xhb Qg = [z]IeTsuas oxhd ,
g = [1,iETsues oxAD "7 = [Q]1i® sSussT0xAD HBUTISOL 103 &
x

0 = [Zipe suas 0xAD

Y667 82 ATn, pareuxsg BTOG UOTISE
pUB GOT3I®I0T Nt 0 Ty

0zAD
proa
}
B 7.¢<]
proa
1
e, v suasT 0IAks
‘g prTsuas 0IAD
. — (=
J'[opowr OIA3

‘6209980 o . TI) ¥TSUIS 51AD
SO = Q] e Suas oIAD

YLOTLOLTO = [Z)ce suas o0xkb

‘918562 °0- = [T]ge suas 014kb
16222990~ = [0]geTsuasT0x4b
LOTLOL 0- = (Z)2e su9s 01hb
1918562 0- = [T1lze suas 0xhb
162229970~ = (0]Ze suas 0akb

G = Z)1e-suss oIAkb
gy2806°0- = 1)1 suss oxAP
1ZEpBIP 0 = .0 1¥ suas 0IAb

/%
IUCT3RIUSTIO «
‘S9Xe 9suas 0IALH aUTIAg

%/

us1I0 sIXY 3ndul 01k

3
€ WOI :3°d

I

!g-9G° (g = juenb s3eI 034D

/» Sxajewexed 3STToweu ,/

e

Jut

()3TUT 03AD
proa

/ax
S30T77UCO (8pCW PIcA®R 0L (§)BT330UCT01AD 03 (G)le 330Ud pabueys
ruung [96 ATND 67 UOTIBOTFTPOW x4/

Sl 1e3a7P
330UCT0IAD JUT
/» TEBOOT «/

fsuenbTe3eIT 0IAD

£iZG suasToxAkb ‘¢ 14§ suss 0ikb
(€izeTSUesST0IAD ‘(¢ 1® SUSs T 0IAD Teai p
/« B3BP ISTTaWeU ./

CIEiEgTsuasT 0xAD
‘{gite T suss 03AD

W4 19poWwT0IAD, SpnIouts
/x TBOOT &/

De39uT3 gq Tes1 p uiazxa
!beT3 beip JUT UI133Xe
‘oxhBT 3. FII4 UIDIXD
i9a81 belp JUT UI33Xd
swT3 belp JUT UIa3Xs
! Tapou JUT UIIIXD

/x SOT3soubetqg ./

<Y BUTIIS> SPNTOUT#H
<Y Y3BW> SPUIOUTH
/» DIEPUR]S L/

:ﬁ.munmmlmﬂmﬁﬂﬂ=wvsﬂocﬂa
/% SOUTINOIGNS XTIJRU I03 «/

W4 s3aep-sadAs3, spniouls
/x 39P9AA3 [BSI P oYy 03 ./

» T9PpOW 01AL 13T TUTISSED L/
/x O 1opOW 0xAD ./

ST:Z1:91
 1eToLe

o
16:12:18 ‘

gyro_model.c

£ gyro, %12.6°¢

[

sens_rate

bb_timetag = %f\n\n", bb_timetag):

"\ nEnd of Cycle. bb_timetag = %f\n\n", bb_

ose(f_gyro) '= 0) |

sens_rate 0! dot2 (rate, cyro_sens_al) ; I else {
sens_ra tefl) = dot3 (rate, c¢yro_sens_al) ; fprintf (
sens_ra tel2! dot2 (rate, Qyro_ sens_al),; %12.6% \n", sens_rate’i), quan t_rem ainder 'i
sens_rate [3]1 = dot3 (rate, ¢yro_sens_ad) ; I
sens_rate [41 = dot3 (rate, gyro_ sens_bl) ; Y5
sens_ra te [5] = dot3 (rate, gyro_sens_ b2) ; i€ (f_gyro (FILE *) NU L) !
sens_rate [6] = dot3 (rate, QYro_ sens_bl) ; printf£("\ nEnd of Cycle.
sens_ratel7)! = dot3 (rate, ogyro_sens_bi! Voelse (
fprintf (f_gyr Q
/*loss Less quant */ metag) |
for (i = 0;1i< 9 1i++){ }
gyr o_bias_real = sens_rate [1!/ gyro_ rate_quant Y
+ quant_remainder [i};
quant_remainder 1] modf {gyrc_bias_real , &gyr o _bias_wh ole); i€ (diag_time == O && model == 41 1
gyro_bias [i] = (in%) gyro_bias_whole; diag_flag = O
} i€ (£_gyro ' = (FILE *) NULL} /
if
overwite with zeros if off */

cyro_onoff_a)
for (I = Q 1 < g; i++)
cyr o_bias il = 0;
gyro_cnoff b))
for (i = 4

I’ f

Di agnosti cs

inc£("%12.6cd\n",

prin £Z(" Error closing Gyroscope Diagnos tic Filet!\n

=2 '! diag_level == 3) !
Yoo

oBiases:\n");

ise)

gyro_bias’il);

“GyroBiases:\n"):
i+4)

fprintf(f gyro, "%12 .6d\n", gyro_bias i!) ;

fprintf (¢ gyro,"Rates %12.6% 31

Y7
if diag_level
LE %)
Y
0; 1 < 2;
pr
)
printf("\n");
I else
forintf (f_gyro,
for (i = 0; i <
fprintf (f_gyre, "\
Y
Y
if (diag_level 2 ‘' diag_level
if (f_gyro == (FILE *}
printf(“"Rates:
21, rate'21);
I else {
01, rate!l], rate(2]) ;
)

J

if (diag_level ==

3) ¢

Sf (£ gyro == (FILE *)
for (i = 0; 1%
print

£\n ", sens_rate (i), quani_rerainder fi!) ;

)

™

3y !
{

)
LAE $12.6F %12.6f\n\n", rate‘0], rate’

.AE %12 .6f\n\n", rate’

%$12.6f gquant_remainder %12 .6

e

cuant_vema inder

5

)

- 97/01/31
16:12:51 . I'w.c

Sk Ak extern struct assem_board card({ 5] ;

* r_wheel *

o T e tendif
voi d RWX_power_on () ;
| “° DESCRIPTION
$Id: rw. c,v 1.27 1997/ 01/2723:02:53i+s1Exp$
Thisfile contains the sinulation for the CASSINI reaction wheels for use /** STRUCTURE definitions **/

ig the Integration and Test Laboratory.
LI /* RTIOU Regist ors */
struct RWA_reg {

/** R EVISION H STORY: int power;
23 June 95: Jason Bunn Creation char reg 0lwr; /* dummy write to enable torw CMD “ /
23 June - 5 July: Jason Bunn Initial Devel opmen & char regQ4wr; /* load mux control reg */
10 July: Ja son Bunn Added Power Model and Integration Coefficients char regléwr; /* Torque CMD * /
14 July: Jason Bunn Began adding interface nodul es char reg02rd; /“ Dummy read to load tach reg * /
21 July: Jason Bunn delivered code to J. Roberts for integration char reg03rd; /* Upp er byte of tach reg */
7 August: Recent Updates : char reg04rd; /* Lower byte of tach reg “/
‘ Tachonet er Model Corrected char reg05rd; /* A/D Converter * |
Bugs fixed to facilitate Integration char reg N4rd; /* Torque CMD wrap-around */
Expanded to four reaction wheels char reg07rd; /* Time out Test '/
27 August 96 Changed %o new power model Y
changed tachoneter function declaration %o short
Changed derivation of scale factor from .1755 /128 «c .1755 /127 struct RWAParam_s (
30 August 96: Coded sw itch from copies to arrays double cog_amp;
20 September 96: Added code to simulate RTIQU reset double cog_phi ;
24 September 96: Added Dahl state friciton limiter and changed scale factor double dahl_amp;
to reflect latest change as per FSC #423, FSW AS5.2.0 double dahl_ang;
15 October 956: Implemented separate current scale factors per FSC #4500, FSW AS5.2.0 double dyn_amp;
>/ double dyn_phi ;
. double int_stp_size;
/** INPUTS FOR EACH WH double max_mer_torg;
Information from the r double phases;
s double poles;
double rate_ cutoff;
/** QUTPUTS FCR EACH double rate_ cuton;
Current state of the reaction wheel, including current, *tach double rip_amp;
output and read bhack commanded torque. double rip_phi
b double slots;
double stat_amp;
double stat_phi;
/ '* OPERATION: int tg wrd_bts
At the start of a loop, the simul at ion checks <o see if power is on. If, so int tach_magrne %< |
the commanded torque is read and added to the state. If not, the commanded double tach_pos_guant;
torque register is not read. wWhen power is first supplied, the registers are couble Vi sc_amp;
cleared to zero. The state is then propagated :in time, followed double wheel_inert ia;
by an output stat e where the current state variables of interest are passed double curren t_scale_factor;
to the registers. The register file communicates with the RTIOU and passes [
the data to the AACS bus through t!h2RTIOU when necessary. LooOpSs occur cog_amp -Description: Reluctance cogging torque amplitude
every 62.5 ms. Cnits ! Nm
v cog_phi ~Necarint ipn- Relucrtance cogging torgque phace
Units @ rad
dahl_amp -Descripti on: Coulomb level for Dahl model of bearing
#include <math. h> drag torque
#include <stdio h> Units N
#include * serverDemo h" dahl_ang -Description: Amplitude of bhearing rotation required €for +
#i fndef SUN he
#include "vme_addresses h*" Dahl model of bearing drag torque *o reach 9
#include "assembly. h" L3 .
of its final value (Coulomb level)
extern int peexé () ; dyn_amp -Description: Amplitude for dynmaic torques due to yheel
extern int poked () ; products of inertia
extern char *assem_rwxl ; Units @ Nm/ (rad/sec)"2
extern char e assem nvx2; dyn_phi -Description: Phase angle for dynamic torqgues due tg wheel
extern char e assem W3 ; products of inertia

extern char *assem_rwxd ; Units: rad

9701731

: * *
. 16:12:51 r'w.c
int_stp_size -Description. Numerical integration step Size are set o zero.
Units sec Units rad/sec
max_mtr_t org -Description: Motor torgue limit w—sd—cutoff -Description: Angular rate at which the commutation ripple
Cnits @ Nm corcue frequency reaches the Nyguist samplin
phases -Description: Number of motor phases 9
Units @ None freguency. At this point , cogging torques
poles -Description: Number of motor poles (2*#¥poles pairs) would be aliased in the sinulation, so chey
Units. None are set to zero
rate_ cut off -Description: RWA rate at which the motor disables notor Units: rad/ sec
torque. A safty feature to prevent RWA damage "
due to overspeed.
Uniss : rad/sec
rate_ cut On -Description: RWA rate at which the motor re-enables motor Y;
torque once it has been shutdown due to an
overspeed condition. /* State Vector and State Derivative */
Un its: rad/sec
I ip_amp -Description: Commut ation ripple torgue phase struct wheel_ state!
Inits, rad double posi tion; /' Position of wheel */
slots -Description: Number of nmotor W nding slots doubl e rate; /* Angul ar Vel ocity of wheele/
Units None double dahl; /* dahl friction term */
stat_ amp -Description: Amplitude for static forces due to wheel Vs
center of nass offset from spin axis
Units @ N/ (rad/sec)"2 struct wheel_ deriv {
stat_ph i -Description: Phase angle for static forces due to wheel doubl e posd; /* Position Derivative {(Angular Velocity) */
center of mass offset from spin axis doubl e rated; /* Angular Velocity Deviv. (Angular
Units: rad Accel eration) ‘1
tach_magne *s The number of magnets in the tachometer. (At least 2 double dahld; /* Dahl friction term rate of change '/
are required) A double variable. Unitless Y
tguwdbht§ -Description: Motor torque word lencght struct RWAParam_s rwa_model'4 | ;
Units , bits
Vi sc_amp -Rescript ion.: Viscous fritction torque for bearing
T oites Nm/ frad/sec} struct RWA reqg rwa_reg'dl;
/* derivied */ struct wheel_state stateld];
double cog_freq;
double dahl_sig;
double rip_ freq; struct wheel_state temp_state_1747,
doubl e torg const;
doubl e w_cog_cutoff
doubl e w_rip_cutof £; struct wheel_ s-ate temp_state_214);
doubl e w_sd_cut off |
VA struct wheel state temp_sta-e_3[4!;
cog_freg -Description: Reluctance €09ging torque” frequency”
Jnit cycles/rad
dahl_sig -Description: Dhal rest slope (change in friction torgque struct wheel deriv statedl[4];
per change in bearing angle at torque=0 struct wheel _deriv stated2(4!;
point} for Dahl model of hearing drag “nrbme struct wh eel der iv ctatedld4l;
Units @ Nm/rad struct wheel _deriv stated4(4];
rip_freq -Description: Comut ation ripple torque " frequency"
Jnits , cycles /rad /** Global Variables **/
torg const -Description: Mot or torque resolution
Units @ Nm per bit double dt = 0.0625;
w_cog_cutoff -Description: Angular rate at which the reluctance cocgging
torque freguency reaches the Nyguist sampling double coef_1 = 0.5;
frequency. At this point, cogging torques double coef_2 = 0.5;
would be ali ased in the sinmulation, so they double coef 3 = 1;
are set to zero double coef_4 = 0. 166667,
Units . rad/sec doubl e coef_5 = 0.333333;
w_rip_cutoff -Description: Angul ar rate at which the commutati on ripple double coef_6 = 0.233333;
torque frequency reaches the Nyquist sanpling double coef_7 = 0.1656667;
frequency. At this point, cogaging torques
woul d be aliased@ in the simulation, so they double fractional _prev_tach [4!;

970131

doubl e overspeed 4] ; fscanf (fp, "%1f", &rwp->dyn_amp) ;
double nxt_overspeed [47 fscanf(fp, "$1f" | &rwp->dyn_phi) ;
double power {41 ; fscanf (fp, “$1E", &rwp->in t_s tp_size);
double torq wordi{d! ; fscanf (fp, "$%$1f", &rwp->max_mtr_to rqg) ;
double torque 4] ; fscanf (fp, "$1£" | &rwp->phases) ;
short tach [4}; fscanf (fp, £* , &rwp->poles) ;
short old_tach_output (4] ; fscanf (fp, "%1f", &rwp->rate_cutoff) ;
short tach_output 41 ; fscanf(fp, "%1f", &rwp->rate_cut on);
int rw_init [4]; fscanf (fp, "$2f" |, &rwp->rip_amp) ;
char e assem ruwx[4! ; fscanf(fp, "$1f" , &rwp->rip_phi) ;
fscanf (fp, “$1£" | &rwp->sl ots) ;
int rwa_£flagf4) = (0, 0, 0, Q}; fscanf(fp, "$1f" | &rwp->stat_amp) ;
fscanf(fp, "%1f" | &rwp->stat_phi) ;
fscanfy fp, "%d* , &rwp->tg_wrd_bts) ;
fscanf (fp, "$1£", &rwp->visc_amp);
| “* FUNCT IONS *#*/ fscanf (fp, "%4" , &rwp->tach_magne *s) ;
#i fdef SUN fscanf(fp, "%1f", &rwp->wheel_iner tia),;
char fscanf(fp, "%1f", &rwp->current_sca _e_fact or) ;
peek8 (char ‘x) fcloselfp) s
Y
return ‘X;
}:
char
poke8{(char ‘X, char ¢} void
RWY_power_off strut: RWA_reg.rwp, char *ass er_base)
*x o= oC;
return c; /' Set commanded torque to zero and power to off./
rwp->reqg 0éwr = 0;
#endif rwp->power . O
/* O ear RAM so that power on functions smcothly ‘/
/* dsign */ poke 2(assem_base + 2*1+1,0});
double pokeR lassem_bhase + 2 .2 + 1,0} ;
dsign(pokef (assem_base + 2 * 3 + 1,0) ;
double a, pokef (assem_base + 2 * 4+1,0) ;
double h) pokef (assem_base + 2 ' 5+ 1,0);
poke® (assem_base + 2 ' 6+ 1,0) ;
if (b »>= 0) pokef (assem_base + 2 * 7 +1,0) ;

return fabs! (float) a) : .,
return -fabs((float) a) ;
I /* Read informa“tion from registers */

void
waﬁge:byte(struct RWA_reg * rwp, char *assem_base, short *tach)
/* Initial Parameters */
void int X:
R WA_load_def {rwp, i) VAN
str uct RWAParam_s *rup ; x= peek 8 (assem_base . 2 .Poweronregister+l);
int i s/
% . read_ rwa_power (assem_base) ;
FILE oip; 1f (y == 1YV 1 /* Is powery on? */
char *a; if (rwp->power == 0) r /* If power is on, isS it a POR » */
if£ (i = 0) RWX_power_on (rwp, Lath) ;
a . " /sim/dynami cs/rw_param s_l “):
1f (i = 1) | * get Torque Enable Command * /
a =" /sim/dynam ics/rw_params_2" ; TWO->Teg plwr = peek® (assem_base + 2 *+ 1 + 1) ;
if (i =2 I’ get 2 ' s complement Torque Command * |
a = “/sim/éynam ics/rw_params_2 “ ; rwp->reglfwr = peek?® (assem base + 2 ' 5 + 1) ;
i€ (i 3))} else ¢
a = " /sim/dynami cs/rw_params_4" ; RWX_powe r_cf £ (rwp, assem_base) ;
Yi
if ((fp = fopen (@, *r"))'= NULL} ();

fscanf (fp, "%1£f", &rwp->cog_amp) ;

fscanf (fp, "$1£" , &rwp->c og_phi) ; /*h'rice information to registers +/

fscanf (fp, "%1£", sarwp->dah 1_amp) ; void

fscanf (fp, "%1f *, &rwp->dahl_ang) ; RWX_putbyte (struct RWA_reg.rwp, Char e asse.mbase)

90131
- 161251

'w.C

double e pto Eal)

/** echo Torque command back to FsSw [

pokeR (assem_base + 2 ' 6 + 1, rwp->regl6xd) ; @doc@ @Gname rwa_pwr
Asem sim card uses a RAM, therefore, we do not want =o overwite new @doc@ @lisc This subroutine calculates “he power usage for a single reaction
rorque information. **/ @doc@ @i sc wheel based on wheel speed and applied -orque values

@doc@ @returns Ptotal

/* A/D Converter info */ @doc@ @reg model the analog portion of the reaction wheel

poke8{assem_base + 2 ' 5 + 1, rwp->reg05xd) ; o’

/* Upper Byte of Tachometer oOutput */

pokeB (assem_base + 2 ' 3 + 1, rwp->reg03rd) ; AN

.Inputs : rw_rate - wheel rate (rad/see) mtr_tg - torque from motor (Nm)

/* Lower Byte of
pokef (assem_base

/*Dummy read to
pokeR (assem_base

Tachonet er Output */

+ 2 *4 4+ 1, rwp->reg 04rd) ;

load tach register */

+ 2 *2 + 1, rwp->regQ2rd) ;

/* Time out Test */

pokeR (assem_base

1" Pahl Friction */

+ 2 *7 + 1, rwp->reqg07rd) ;

/* Adpopted from Matt Wette's Code */

* This routine models the analog portion of the Cassini

* Assembly (RWA) Dahl £friction model.

* The routine accepts

* torque. I
* friction ¢

LN
double

sl
orque.

RWA_dahl (struct RWAParam_s.rwp,

struct wheel g¢

/* angle rate fromadyn (

ate * state, /I’
rad/see) ‘/

/* Dahl! fric from dahl-model (Nm) * /

double fric_do %)

the current value 0f the RWA bearing angle,
* velocity, and the current value of the Dah! model bearing and friction
“hen returns the time derivative of the Dahl model bearing

gimbal angle from dyn (rad) +/

/* time deriv of dahl fric (Nm/s) “1

Reaction Wheel

bearing

*

* Outputs: Ptotal — Total power usage (Watt s}
*

.

/ * Based on Appenix to CAB dated 11-94 changed on 5-24-96 by L .Montanez */

/** New nodel based on Model Validation Team input 8/9/9%
.gwanged 9/27/96 by . Bunn

double cOPower, clPower, C2Power, c3 Power, c4Power;
cCPower 9. 4999355; /* Warts */
cl Power = 60.4512337; /* Watts/ (N-m)e
c2Power . 1,03 54894, /* watts/ (N-m) per rad/sece
c3Power = 0.00280 60; /* Watts/ (rad/sec */
c4Power = 4. 00; /* Watts */
if (mtr_tqg < 0.0)
*protal = (c0Power + (clPower * fabsimtr_tqg)) -
[c3Power + c2Power * fabsimtr_tg)) * rw_rate);
else
r_tg) +

*ptotal = (cOPower + {(clPower * mt)
{c3Power + c2Power * mtr_tq) * rw_rate);
if f(*prtotal < 0.0)
*protal =
else
*ptotal +. ¢4 Power;

double dahl_fric_lim; void
double dtorg cangl e; RWA_ana(
double L oenp; struct RWAParam_s , rwp,

/* Conpute the time derivative of the Dahl bearing torque : */
if (fabs{state->dahl) >= (rwp->dahl_amp)) ’

dahl_fric_lim = dsign{ (rwp->dahl_amp) ,

} else ¢

dahl_fric_linm

state ->dahl

double
struce
double
double
double
double

rorqg word,
whe el_state
*ovr_spd_f£ la,
*torg,

*poweT

*nxt_o_s_f)

state,

J

temp = 1.0 + dsign(l. 0, state ->rate) * dahl_fric_lim / (rwp->dahl_amp) ;
dtorqg dangle . -{rwp->dahl_sig) ' dsign{(l .0, temp) ‘' fabs(temp):
(fric_dot) = state ->rate , dtorg dangle;

return (fric_dot) ;

/* Power Model Current = Power | 30 Volts */
void
rwa_pwr (

doubl e rw_rate,

doubl € mtr_tqa,

s
@doc@ @name R WA_ana

@doc@ @lisc This routine accepts the current value of the RWA -orque cmg,
@doc@ @disc bearing angle, bearing velocity, and the current viaue of che
@doc@ @i sc Dahl model bearing friction torgue and overspeed flag

@doc@ @returns torg, stat _forcel, stat _force2, dyn_tor quel, dyn_torque2, power
@doc@ Qreturns nxt_o_s_§£

@Aoc@ @functions_called fabs, rwa_pwr

Qdoc@ freqg model the analog portion of the reaction wheel

..

double cogging_t org;

' {p9adsisano” 3XU

'SISubeW yoeL<-dMI / 6L6BSESSZ6GTIYIE « O
S

‘00 = @3BI<-33E3S
1670 = uotitsod<-o3e3s

(®3e35 , 93B3ST99YM IONA3S)ITUT 93e"S

N

Pion

/x S9INTONIIS SATITATISQ 93BLS PUR 33835 9ZTTEIIIUL ./

= juenbTsod yoei<-dmi
{{ezts dis aut<-dmi} / § TUf = 3303N0TpsTm<-dmx
f{({eztsTdis 3ut<-dma)
(bex3 drac-dma)} / 65197 &£ = 330300 drai Mc-dma
f{(ez1s dis ul<-dmi)
(bex37boo<-dma)) / €GTIVi € =

3303007 D0 M<c-dMI
(T - ({1 - s3g pam bi<-dmz)

>> 1))
/ (bxo3iTijw xew<-dma) = LSU0D bIoI<-dmix
{{se10d<-dma) , (seseyd<-dmi; = bexz dri<-dmi
J{pueT Iyep<-ami) / (due [yep<-dmI) . 'y = DIS [yep<-dmi
! (s307s<-dm1; = bsaz boo<-dmia

(dmz , sTwexedymy 3ona3s)swexed pdnymd
ptoa
/x SUTIINOY UOTZBZTBILTUL »/

10 = yoed,
= pagoboa<-dma
= pagobsi<-dmi
= pappboi<-dmi
= pagpbaa<-dma
= pazobei<-dma
!7 = 2omod<-dma

oo aoo
1 I

/e 9ANTONIIS BMI L/
(YJBe% . 2iI0ys ‘dma Dea”YmMyd IO00I3S
yuo~ zemod ¥Md
pIoA
/s SBINPBI0IF UQ I8MOd 4/

¢ = bsayoes.
Pigobex<-dma
pigpbaz<-dma
pappbea<-dma
Pigobex<-dma
PizZoboa<-dma
amgobei<-dma
i = zomod<-dma
/» VANSONILS BMI 4 3
(Do~ yoel, 3I3I0YS
‘dmx , DoaTyMyd 30ni3S
) 39P PEOT ™ XMY
pIoa
/s SONTeA TBITUI DBOT o/

[N NN <Nl
[

+(PTYeP<-poiels ‘o3e3s ‘swexed) (Uep UMd = PIYRP<-PI3E3S
‘er3asut [eeym<-swexed ; onbioci, = pailei<-paiesls
!93e1<-9303S = Psod<-pajzess

‘zomod ‘enbiaol ‘poodsT I8N0 'S3EB3S pPIom D03 ‘swexed)eue vME

(zamod, aTgnop

‘enbi03.« 81gnop

swexed , sTweIerdyMd 3IoNI3S
‘peadsIano” 3XU, BTGNOP

‘peadsTa1an0, aTGNOP
‘PO3BIS 4 ATISP” T99UYM 300NI5S
‘pIomT baol aTqnop
‘93e3S 4 93357 [89UyM 10NISS
JATISDP M
PTA

o
/+ SATIBATISG 93835 O3IRILOTED ..

! (zamod ‘DIO3TI0S0W ‘23RI<-93e3s) amd emi
/% YMd 943 Aq pesn asmod syjz aszndwol L/
‘OTAFTOSTA + TueEp<-93e3S + bioiTe(ddra + baojTzozow = (bioj,

TRQUIL ¥MY Oyl Luole portdde o TTM

TUCTIBTOWTS SOTWEUAP oy

3
Jeys anbiocy [e303 a9yl o3ndwod

n

‘g3eic-93e3s 4 (due T osTa<-dMI) - = DTIFTOSTA
/» :onbI03 UOTI2TIZ STODSTA 83NdWOD 4/

‘(X)uis 4 broiTaojow , (dweTdri<-dmi) = biozTetddrx
S{iyd dtac-dma) o+ uotiTscd<-93e3s . (bexzTdia<-dmi) = X
} 9sia {
‘070 = biozTetddra
;o({3303n27dia T me-dma) =< {@3BX<-3303S)SGe;) 31
/s 1O0DI0T 87ddIi UOTIRINWWOD a3ndwo) 4/

a3 {inu

ol

;o ({uo3ndoTesei<-dmMa)

7 {(33F03no 93e1<-dMI)

13 943 103 9nNTeA 018Z-UOU Y

©

!¢ = bao3zTaosouw
9579 |
x UMOS(UuO; = b3 Fojou
(070 == B3 pds~ano,

;onbI0T I03I0W 4

‘S3STX® UOTLTPUCS poadsisano ue 331 anbx03 X030 a3ndwo)d

1378707 -xu, = B3 pdsTIn0,

1071 = 3 s oTaxu,
} este {
"0 = 3 sTOTaxu,
=> (83ei<-93B3S5)sGe;) 3T
b 9s1o |
G0 = 37sToTaxu,
) 9@s19
10T = 3 8T 0 3XU,
=< {93eX<-93®35)s5qe3) 3T
) {070 == D13 pdsTan0. 3T

TUOTIIPLOD poadsSIdA0 UB Sa3EDTIPUT &
oe

"BeT3 I03eDTPUT pasdsIsno 3UL 4

30 onjea 3xX9u &yi 93ndwod PuB UOTIIPUCD PosdsSIsano YME UR 103 O3YD &

8\

x argnop
!2TI3TOSTA a1qnop
!bao3 e1ddta aTgnop
!bro3T 1030w arqnop

ISITIeL
TE/I01L6

970131
. 161251 Iw.c

state ->dahl = O Q

voi d
stated_ini t (s truct wheel _deriv ' stated)
(
stated->posd = O 0;
stated-> >rated =
stated- >dahld =

[>Ne)

0:
K
}

#ifdef OLD

doubl e

tachometer {struct RWAParam_s * rwa_model, struct wheel _state * state, short *old_ tach_ou
tput, short *tach_ output)

{

double tach_ quan &;
doubl e inc_tach_output;

*old_ tach_output * tach_output ;
tach_quant = 2 0 ' 3 141592654 /| rwa_model ->tach_magnets;
inc_tach_outpu £ = (stat e->rate s tach_gquant) - *o l1d_tach_ou “put;
*tach_output . ® old_cach_ou:p,Jt inc_rach_cutpit
return (inc_tach_output) ;

1.

#erdi £

short

tachometer{struct RWAParam_ s * rwa_model, st ruct wheel_s*ate * state, double *fractional
_prev_tach)

{

double real_tach;
double ideal_tach;
double tach_quant;
tach_quant . 2 0 ' 3.141592654 /| rwa_model ->tach_magne*s;

ideal _tach . (sta te-»ra‘te |/ tach_quant)* .125;
real _tach = ideal _tach *fracti onal_prev_ta Ch;
*fracti onal _prev_tach = real_*ach - (in%) real _*tach;

return ((short) real _tach);

void

Output(struct RWA_reg * rwa_reg, struct RWAParam_s * rwa_model, struct wheel _state * sta
te, double *power, short *tach, double *fractional_prev_tach)

.

shore temp_tach;
short overt ach;
short under tach;
double current;

current = ((*power / 30.0) / (rwa_model ->current_sca le_fac tcr)) + 12R.0;
rwa_reg->reg05rd . current;
rwa_reg->reg C 6rd . rwa_reg->reg O fwr;
etach . tachome terf{rwa_model , sta%te, frac-i onal _prev_tach) ;
temp_tach . *tach;
overtach = Q
undertach = Q
i€ (*tach > 2047)
overtach = 0x8000;
if (*tach < -2048)
undertach = 0x4000;
temp_tach = (*tach & OxFFF) | overtach undertach;
rwa_reg->reg03rd . (temp_tach >> 8 & 0OxFF) ;
rwa_reg->reg04rd = (temp_tach & OxFF) ;

rwa_reg->reg02rd = {0 xXFFFF & Ox7F) ;
rwa_rec->reg 07xd = (0 xFF) ;
1.

#ifdef guy

char assem _rwxl OxfEE £1
char asser_rwx2 [Ox£E£EY
char assem_rwx3 [OxE££££)
char assem_rwxd (Oxff ££7 ;
#endi £
int
read_ rwa_power (base)
char *hase
!
int power, pwr_status;

pwr_status . peek8 (base + (0xB000 + 1)) ;
power = O
if ((pwr_status & 9x04) == 0x04)

power . 1;

return (power! ;

int i

for (1 = 0; 1 < 4; i++4)(
/* Initialize */
fraction al _prev_tach i) =0C.0;
overspeed’il = O
nxt_overspeed [i !=10;
powerl(i). O
torq wordflil! . 0;

corgue [i) . O
tach i) . o;
old_tach_outpu~ [
tach_output i’
rw_init [i) = 0O;

/+ Reset registers tozero and clear any accumulators
RWA_load_def (&rwa_model ! i), i) ;

R WA_upd_params (&rwa_model i) ;

RWX_load_def (&rwa_rec | i 1, &tach i) ;

/* Initialize state and derivitive Structurese |
state_ initigstate’il) ;

state_ ini t(&temp_state_1Til) ;

staze_ init (&temp_state_2 !)
state_ initligtemp_s tate_3 "i1) ;

stated_ ini t{&stated! [i!
stated_init (&stated2 [i!
stated_ init(&stated3 [i]
stated_ini % {&statedd 1]

)
) s
)

)

4

rw_inis [i) = 1;

assem_rwx![0! = assem_rwxl;

*/

- 97/01/31
16:12:51

= assem_rwx2 ;

assem_rwx (1]
| assem_rwx32 ;

assem_rwx [2

I'w.C

assem_rwx (3! = assem_rwx4;
return O
b
int
rwa_loop ()
s
int i;
for (i = O 1< 4; i+s+)1
| .Read Rex isters ‘/
RWX_getbyte (krwa_reg | i |, assem_rwx [i], &tach (]!
if (rw_initli! == O
return 0;
if ((rwa zeali].reg Olwr '= O && (rwa_flag 'i) == 1))
rwa_flagfil!. 2 ;
else if | (rwa_regli!.reg Qlwr '= 0) & (rwa_flag’i] == 2!
rwa_ flag 1] = 0;
else 1€ ((rwa_reglil. reg 2 lwr '= 0) && (rwa_flagli) == 0
pokeflassem_rwx [i] + 2 * 6 + 1, 0);
rwa_req ‘1) regléwr = (0 ;
== { && rwa_reg i ! .power == 11 |
rwa_%flagli! = 1;
poked {assem_rwx[il + 2 * 2 + 1, OxXFF) ;
Y
/* Compute Torque Word */
if (rwa_regli! . regléwr > rwa_modelli) . max_mtr_%“org / rwa_model il .*org c
onse)

torg word'i! = dsign(rwa_model (i !.max _mtr_torg / rwa_nodel ‘i

fi).reglswr);

/* Propagate State */

iables

/*

* 4th order numerical integration. Time step = dt = 0.0625
* seconds. Caculates the next values of the sta%te var

*/

rwa_deriv (&statelil,

speed " 1] ,
&rwa_model[i], &torquelil, spower i})
temp_s tate_l1 (i} .position = stateli' .position + coef_1 "' dt
posgd;
temp_state_l ‘i) rate = stateli).ra te + coef_1 * dt '
temp_state_1 (i} .dahl = sta teli’ .dahl + coef_2 . gt , statedl’i
rwa_der iv(&temp_s*ta te_17i 1, torg wordfi!, &stated2'il,
xt_overspeed [1!,
&rwa_moce 113, &torque , &power i) ;
temp_sta te_2 [i) position =] position coef 2 *
posd;
temp_state_2 (i)l rate = state (i) rate + coef_2 ' 4t ' stated2 i
temp_state_2 [1) .dahl state 1] .dahl + coef_2 * @t * stated2 i
rwa_deriv (stemp_state_2 (i], torg word[Z), &stated3 | | | &overspeed [
xt_overspeed [1 !,
&rwa_model [i], &torgue [i], &powerfil) ;

terg word [11, &statedl fi], &cverspeed [1i]

Loverspeed! i},

dt. stated2

B

statedl [i] rated;
.dahld;

&

<o

&nxt_over

ti?

! rated;

temp_state_37il.pos it on = statefi] position + coef_3 ‘' dt.stated3
i) .posd;

remp_state_37il. rate = state 'i].rate + coef_23 ' dt.sta tedl i! .ra ke
d;

temp_state_3'i).dahl = statefi).dahl + coef_3 * At * stated2!i).dahl
s

rwa_deriv (& temp_state _3{i!, ‘tergword [i] , &statedd4 i 1, &over speed! il

&nxt_overspeedl[i| ,

&rwa_model fil | &torcue(i], &power(il)l;

stateli) .position += dt * (coef_4 ' statedl [i] .posd + coef 5 * gstate

d21i] .posd +

coef_6 * sta ted2 1! .posd + coef_7.statedd Ii! .posd):

state rilrate += dt *

(coef_4.statedl [i

[N

rated +
coef_6 * stated2lilrated + coef_7 * sta tedd i) rated)
state’i] .dahl += At * (coef_4 ' statedl (i) .dahld + coef_ 5"
il .dahld +
coef_ 6 * staredld i) . dahld + coef_7 *
/* Dahl Model Friction Limiter */

if (fabs(state’i!.dahl) »>= (rwa_modelfi}.dahl_amp))
1
J

/* Output Registers */

Qutput(&rwa_reg’i’, &rwa_model i}, &statelil,
fractional prev_tach [i!)

if (card ri+2] .assem_write_ok '= 0) {
RWX_putbyte (&rwa_regfii, assem_rwx(il);
card!i+2). assem_write_done = -1;

¥

1
return 0;

rated + coef_ 5 * statedl [

statedd il .dahld);

sta ted2 !

.dahl = dsion({rwa_model!i! . dahl amp,statelil.dahl);

©97/01/31

= td 4 .
~ 16:14:25 rw_model.c
/* rw_model C */
/* cassini itl reaction wheel model */ int i
/* for the d_real typedef */ /* namelist paraneters */
#include "types-darts h" rw_dt = 0.125;
/* for PI */ rw_wheel Inertia = 0.15146;
#include "generic- darts .h" rw_num_magnets = 24, ;
rw_visc_amp = 1.14 fe-4;
/* standard */ rw_rate_est_Wn =01 ; /* in Hz */
#include <string. h> rw_cont_Wn = O 01; /* in Hz */
max_mtr_trg = O 17399;
/* local “/ trg wrd_bits = 8;
#include “ rw_model h*
. . /* derived paraneters ‘/
¢+ Diagnostics trqg scale_fact or . max_mtr_trg / (1l << ((unsigned int) ¢
extern int nodel):
extern int diag_*time; rw_tach_sca le_factor = 2 “ PI | rw_num_magnets;
extern int diag_level ; rw_lowPassGain2 = exp(~ (2. * Pl.rw_rate_est_Wn) * rw_dt) ;
extern FILE Yfrwa; rw_lowPass Gainl = 1 - rw_lowPass Gain2 ;
extern int diag_flag; . rw_kp = 2. ° 0.707 .(2 * PI * rw_cont_Wn) * rw_wheel Inertia;
extern ¢_real bb_timetag; rw_ ki = pom((2 * PI.rw_cont_Wn) , 2) .rw_wheel Inertia;
/* namelist data */ /*initialize */
d_real rw_num_ragnets, rw_ra t €_eS t_Wn, rw_c¢ on%_Wn, rw_whee 1 Inert i a, rw_v i sc_amp for (i = 0,1 <4 i1+4)¢
tach_ t_tag_save 'i! = O;
rw_ct, max_mtr_trg, trg wrd_bi rw_rate_est "1l =10
rw_drag_tqg est ' i 1=10;
/* derived parameters (ini%t) */ old_tach_out (1] = O
d_real rw_tach_scale_factor, rw_lowPassGain2, rw_lowPassGainl, rw_kp, old_trg comfil! — 0;
rw_ki, trg scale_factor;, last_pwr (i) = C
/* local to model */
d_real tach_*t_tag_save!4!, rw_rate_est 4!, rw_drag_%tqg_esti4}; /* default wheels on */
d_real old_trg coml4!? for (i = 0; 1 < 4; i++)
int rwa_onoff4', old_tach_out!4!, last_pwr'4!; rwa_oncffri! = 1;
/** CHANGE LOG: **/
/** Modification 29 July 96 by J. Bunn: void
Changed onoff to rwa_onoff o avoid conflict with other models rw_onoff (onoff_scr)
Changed wheel interia to 0.16146 o match rw_params files char onoff strfl;
Changed number of magnets *to 24 to match rw_params files
Added scale factor to convert from dn £o torque in rw_model.c if ('stremplonoff_str, "rwl on"))
e/ rwa_onoff1 0! = 1;
) i€ (tstremplonoff_str, "rwl off"))
/** Modification 21 August by R. Okuno, J. Bunn, D. Garcia: rwa_onoff [01 = C;
Added filter to limit tach count *o max that can be expected (100 per RTI} if (tstromp (onoff_str, "rw2 on"))
Added filter to 1 torgue command to max (0.1755) rwa_onoff!l 11 = 1;
Added filter to limit maximum drag torque if ('stremplonoff str, "rw2 off'))
L rwa_onoff [1! . 0O;
ift'gtremplon of £ s *%r, “rwl on™))
/** Modi fication 23 August by J. Bunn, ?.. Okuno : rwa_onof £1 27 = 1;
Added filter to limit tim etag to between 1 and .15 seconds 1£ (strcmp(onoff _str, "rw3 off"))
o rwa_on off 21 = 0O;
1f ('stremplonoff_str, “"rwéd on"))
| ** Recent Enhancenents rwa_onof £13 1 = 1,
1. Converted scale factor o variable calculated in rw-init (8 /27/96 J. Bunn) if i tstremplonoff_s tr, “"rwd offv))
2. Updated rw_visc_amp to match CAB (9/27/96 J. =Bunn) rwa_onof f ©3 = 0;

3. Added code to set rate estimate Lo rate sample if wheels are just being turned on (P

[/ 27/ 96 C. Bunn)
LN

I 11/ 22/ 95— Updated *o have latest max motor torgue
voi d
rw_init()

voi d

rw_model (temp_trg com, trg app new_tach_out, *tach_%t_tag, rates,

d_real temp_trg coml], trg appl!, tach *t_tag'’!,
int pwr_st ! 1
int rew_tach_out []

pwr_st)
rates'!;

39°21% enes"be3”3 sieUILajUL jautad
JOTION (o F-Id) == emaT3) 3T
} (g == (9a21 EBTIO 3T
o
{
f{{1,3s7amd ‘[Tjse3ea ‘[T;3N0TYoEI MU ‘[T,be3"3
TYoen ’ (Tjwoo baiTdwes ' ,U\py Iomod 3G °Gy SO3RI PG YORITMAU 3¢ 7Ty bei 3 dwes 3

Gy bazTdwes :sindui . ‘emaT) zLutady
b ®sTe
S{{1]3sTamd ‘[1]jsezex
{TibeiT3Tyoes [Ti;wod baz dwai L u\pPg xemcd 3G°G% S93€X
Tdwsi 397Gy DazTdwses :sindul W) FaUTI
}oATION (. J1Id) == emIT3) 3T
Jo{€ == T8n917berp | ¢ == (84S Detp) 3T
o
Sy COrDI0; SINAING P% YME. ‘BMIT)33UTids
;9819 |
‘WU\ 397Gy enbrol :sinding Py YMd.) Fautad
(TIAN (» 3TId) == emi"3) 31
7€ == 1eas1TBeIp || 2T == 19a97 Belp |, 1 == 19a8717beIp) 371
o
!7 = feyz Delp
1
OTLs0oUbeIp ¥My 03 9aniieyg uadg o1T4.)3autad
d) == ({.m, ’',sDetp emi/dus/uts/,)uadoy = emi 3)) 31
; {0 == Dbel3 beIP) 37T
7 {0 < swWiIiTDhETP X% ¢ == I9POu)
/» SOIISOUDET]
‘b3Ta1200 [(1,W007bay = [T)dde bas
$-922°¢€) » G T)- = [T,3S9 b3 beapTmx
T + p-922°€) » S'1)- > (Ti13S87Dh3iTBeapTmi) 3T
012 » 9-99PT T + $-922°€) » S°1) = (1,3887D3 Deap ma
({{0TT » P-99¥T"T + ¥-922°€) « G 1) < {Tj3s97 D3 Deap mz) 37

(psads™ xeu,due” ostardweT (yeP} ST = IZTWIT 4/
SQWIF I3TIP » T MI =- {1,359 b3 Deap ma
hﬂuumwlwulmMMUIBhnwulunoo

/»
!2033979%BA 4
‘103397 9%ex 4 dyTma -

/» UOT3IE3NdWOS UOT3291200 20bi03 ISTTOIJUCD 4/

f{T)S9%eX - [1]3S97 831 MI =
{[1]25979303ITMI , ZUTROSSRJMO Mi

01312 9381

dues @381 , [UTEBOHSSEJMOT MI = [1]3S3” 9381 MI

95179 |

1 = [tiamd 3se7

co1dwesTe3eI = [1]3S9 9381 MI
} {0 == [t;amd uisel) 31
/s IOJRUWTIISE 93IRI ./

p ; Xojoe3 8@leds yoei mi , [T]3no yoel = sydwes eiex

WI3Se 23BI MU 93ndwod - pawxojziad PeaT ORI MIU 44/

6Z10 = 2WIITFITP

(GT°0 < SWTIIT3FITP |, 0T°C > dWIZ 33TP) 37T

PS% yoei"meu

‘{1)3n0 yory Mou

39777 beiTs

dde"ba3 ‘T ‘,U\N 39
{{1;dde" a3 ‘T
<
/x
(TTON (» 31I
EN
*/
.
{(Q
20300
sq O3 SposN
+ 81
(BWTITIFT
.. o3e

sajel

e318p

O [opouwt miI

b oeste
Q0 = I0x1s 93ex

({0SZ°0 < 2WI3"33TP) |, (0'0 == SWIITI3TP)) 3T

f(tiBesT3iTyoey = [1jeaes bej 3 yoey

(T)eaesTHe3IT3TYoes - [1)be3T3Tyoel = awi3TIFIP
} 9813 ¢

‘0 = [Tyamd 3ser

({T]sazex , due osSTA MI- = dde baj

;oo ({Ti3sTamdi) |, ({T,F30uU0TBMI|)) 3IT
/+ UMOp utds 3ISn{ 3JO T 4/

b (++T ‘p > T Qg = T) I03
T]3N07yoes3 = T]300 ORI pPTle
{
S{T;300TyoRY MaU = [T]3noTyoe;
CEME]
f{TI300THORITPTIO = [T]3n0THoRS
(00T- > [Tj3no yoei~mau) 3T
asis {
dlrjanoTyoesT MU = Ti3no yoes
EEr)
[T,3007ydR3 PIO = [T]3no yoes
(GOT < {7 3007 ydei mau) 3t
b {0 =< {(Ij3noTyoeiTmMeu) 3T
JolsrT 9 > T 10 = 1) 03
00T PUB (07— U99M39{ O3 BLED UORL DUTWODUT PUNOG 03 IS5TWTT 4/
S{TiwWodThbas = (T wod bazTpie
Y
fiTijwedThiiTmeu = [T,woo7bas
asi9
({1 WosTbi3zTpPIo = [T;Wod biag
(SGLtT - > [Tjwoo™Dai"meu) 31
i 9sTe {
PLTIWOSTDAZTMOU = (T w00 Dbag
asTa
C{TIwWo0ThaIsZTRPIoO = [T wooT Dbag
(SSLT" < [TjWod™Daz"mau) 3T
3 (070 =< ([Tw0d biz"meu) 3T
+203003T9TRIS DAL . (T1Wod ba3z dwas = [TjwWod DI3Tm3U
/xx
3797e0s D13 8y BIA 2UOP ST STYL ~ONbDI0I 03 pabueyd .
TIOLTUOK SNG WOIj Up SB UT Sawod anbioci POPUBUMICD 4
PoleeT PP > T I0 = T 203
/ex GGLT® -+ O3 pUBWWOOS bi3 DUTWOSUY DUNGY OF ISF3TWIT 44/
{[yiwoo"bi3 Tes1 P
fiyianoTyoey ‘T uT
‘ordwesTozex ‘b3TII0s 'I0IIs eseX ‘BUWTL 33IP Teax p
! piwoD T ba3Tmau Teai p
S789UM SLYVYa 03 potidde anbaog dde™ba3 3nio

so3e3s Iamod [eaym
$®3ex SDEL SWI3 peax yoes
N0 yoey sanbiocl [o9UM PIPUBWWOD

ssTamd s1¥vq woay
5e3 3T yoe; syoej sasynd
wod baj dwel :uT

To9yM

. STTT.
. - 1EM10/L6

97/01/31
16:14:25

rw_model.c

rate_est %5.6f drag_tw %2.6f old_tach %5d old_torg %2.6I\n 1, r
w_rate_est i), rw_drag_tq_est'il, old_tach_out'il, old_trg com!
print (" “_pwr 2@ onoff g
new_trag %3.56% *+ach_out %5¢ ‘trg_com %3.6f\n\n", 1 , i, mew_trg com’
i', *ach_ouc'il, trg com'ily;
Y else !

Tnternals: %_tag_save %1

2.6% rate_est %5.6f drac_tw

_save'i
, rw_rate_es=(i!, rw_drag_%tg est|

R
2d new_%trg %3.6f <+tach_out %52 T rwa_onoffri’, new_
g com(il!, *tach_oux’i? Y

, Ltrg_com

